[3442] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Linq;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Operators;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[3452] | 31 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
[3531] | 33 | using System.Collections.Generic;
|
---|
| 34 | using HeuristicLab.Analysis;
|
---|
[3442] | 35 |
|
---|
[3532] | 36 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
| 37 |
|
---|
[3442] | 38 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
| 39 | /// <summary>
|
---|
| 40 | /// An operator for visualizing the best symbolic regression solution based on the validation set.
|
---|
| 41 | /// </summary>
|
---|
| 42 | [Item("BestSymbolicExpressionTreeVisualizer", "An operator for visualizing the best symbolic regression solution based on the validation set.")]
|
---|
| 43 | [StorableClass]
|
---|
| 44 | public sealed class BestValidationSymbolicRegressionSolutionVisualizer : SingleSuccessorOperator, ISingleObjectiveSolutionsVisualizer, ISolutionsVisualizer {
|
---|
[3462] | 45 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
[3513] | 46 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
| 47 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
[3532] | 48 | private const string AlphaParameterName = "Alpha";
|
---|
| 49 | private const string BetaParameterName = "Beta";
|
---|
[3442] | 50 | private const string SymbolicRegressionModelParameterName = "SymbolicRegressionModel";
|
---|
| 51 | private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
|
---|
| 52 | private const string BestValidationSolutionParameterName = "BestValidationSolution";
|
---|
[3452] | 53 | private const string ValidationSamplesStartParameterName = "ValidationSamplesStart";
|
---|
| 54 | private const string ValidationSamplesEndParameterName = "ValidationSamplesEnd";
|
---|
[3442] | 55 | private const string QualityParameterName = "Quality";
|
---|
[3452] | 56 | private const string ResultsParameterName = "Results";
|
---|
[3531] | 57 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
[3452] | 58 |
|
---|
| 59 | #region parameter properties
|
---|
[3462] | 60 | public ILookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
| 61 | get { return (ILookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
[3452] | 62 | }
|
---|
[3513] | 63 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
| 64 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
| 65 | }
|
---|
| 66 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
| 67 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
| 68 | }
|
---|
[3452] | 69 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
| 70 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
| 71 | }
|
---|
| 72 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
| 73 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
[3442] | 76 | public ILookupParameter<ItemArray<SymbolicExpressionTree>> SymbolicExpressionTreeParameter {
|
---|
| 77 | get { return (ILookupParameter<ItemArray<SymbolicExpressionTree>>)Parameters[SymbolicRegressionModelParameterName]; }
|
---|
| 78 | }
|
---|
[3532] | 79 | public ILookupParameter<ItemArray<DoubleValue>> AlphaParameter {
|
---|
| 80 | get { return (ILookupParameter<ItemArray<DoubleValue>>)Parameters[AlphaParameterName]; }
|
---|
| 81 | }
|
---|
| 82 | public ILookupParameter<ItemArray<DoubleValue>> BetaParameter {
|
---|
| 83 | get { return (ILookupParameter<ItemArray<DoubleValue>>)Parameters[BetaParameterName]; }
|
---|
| 84 | }
|
---|
[3442] | 85 | public ILookupParameter<DataAnalysisProblemData> DataAnalysisProblemDataParameter {
|
---|
| 86 | get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[DataAnalysisProblemDataParameterName]; }
|
---|
| 87 | }
|
---|
| 88 | public ILookupParameter<SymbolicRegressionSolution> BestValidationSolutionParameter {
|
---|
| 89 | get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestValidationSolutionParameterName]; }
|
---|
| 90 | }
|
---|
| 91 | ILookupParameter ISolutionsVisualizer.VisualizationParameter {
|
---|
| 92 | get { return BestValidationSolutionParameter; }
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | public ILookupParameter<ItemArray<DoubleValue>> QualityParameter {
|
---|
| 96 | get { return (ILookupParameter<ItemArray<DoubleValue>>)Parameters[QualityParameterName]; }
|
---|
| 97 | }
|
---|
| 98 |
|
---|
[3452] | 99 | public ILookupParameter<ResultCollection> ResultParameter {
|
---|
| 100 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
| 101 | }
|
---|
[3531] | 102 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
| 103 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
| 104 | }
|
---|
| 105 |
|
---|
[3452] | 106 | #endregion
|
---|
| 107 |
|
---|
| 108 | #region properties
|
---|
[3462] | 109 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
| 110 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
[3452] | 111 | }
|
---|
[3513] | 112 | public DoubleValue UpperEstimationLimit {
|
---|
| 113 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
| 114 | }
|
---|
| 115 | public DoubleValue LowerEstimationLimit {
|
---|
| 116 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
| 117 | }
|
---|
[3452] | 118 | public IntValue ValidationSamplesStart {
|
---|
| 119 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
| 120 | }
|
---|
| 121 | public IntValue ValidationSamplesEnd {
|
---|
| 122 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
| 123 | }
|
---|
[3531] | 124 | public DataTable VariableFrequencies {
|
---|
| 125 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
| 126 | set { VariableFrequenciesParameter.ActualValue = value; }
|
---|
| 127 | }
|
---|
[3452] | 128 | #endregion
|
---|
| 129 |
|
---|
[3442] | 130 | public BestValidationSymbolicRegressionSolutionVisualizer()
|
---|
| 131 | : base() {
|
---|
| 132 | Parameters.Add(new SubScopesLookupParameter<SymbolicExpressionTree>(SymbolicRegressionModelParameterName, "The symbolic regression solutions from which the best solution should be visualized."));
|
---|
| 133 | Parameters.Add(new SubScopesLookupParameter<DoubleValue>(QualityParameterName, "The quality of the symbolic regression solutions."));
|
---|
| 134 | Parameters.Add(new LookupParameter<DataAnalysisProblemData>(DataAnalysisProblemDataParameterName, "The symbolic regression problme data on which the best solution should be evaluated."));
|
---|
[3462] | 135 | Parameters.Add(new LookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of symbolic expression trees."));
|
---|
[3532] | 136 | Parameters.Add(new SubScopesLookupParameter<DoubleValue>(AlphaParameterName, "Alpha parameter for linear scaling of the estimated values."));
|
---|
| 137 | Parameters.Add(new SubScopesLookupParameter<DoubleValue>(BetaParameterName, "Beta parameter for linear scaling ot the estimated values."));
|
---|
[3513] | 138 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
| 139 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
[3452] | 140 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The start index of the validation partition (part of the training partition)."));
|
---|
| 141 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The end index of the validation partition (part of the training partition)."));
|
---|
[3442] | 142 | Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestValidationSolutionParameterName, "The best symbolic expression tree based on the validation data for the symbolic regression problem."));
|
---|
[3531] | 143 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The relative variable reference frequencies aggregated over the whole population."));
|
---|
[3452] | 144 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection of the algorithm."));
|
---|
[3442] | 145 | }
|
---|
| 146 |
|
---|
| 147 | public override IOperation Apply() {
|
---|
| 148 | ItemArray<SymbolicExpressionTree> expressions = SymbolicExpressionTreeParameter.ActualValue;
|
---|
[3532] | 149 | ItemArray<DoubleValue> alphas = AlphaParameter.ActualValue;
|
---|
| 150 | ItemArray<DoubleValue> betas = BetaParameter.ActualValue;
|
---|
| 151 | var scaledExpressions = from i in Enumerable.Range(0, expressions.Count())
|
---|
| 152 | let expr = expressions[i]
|
---|
[3542] | 153 | let alpha = alphas[i] == null ? 0.0 : alphas[i].Value
|
---|
| 154 | let beta = betas[i] == null ? 1.0 : betas[i].Value
|
---|
[3532] | 155 | select new { Expression = expr, Alpha = alpha, Beta = beta };
|
---|
[3442] | 156 | DataAnalysisProblemData problemData = DataAnalysisProblemDataParameter.ActualValue;
|
---|
[3531] | 157 | #region update variable frequencies
|
---|
| 158 | var inputVariables = problemData.InputVariables.Select(x => x.Value);
|
---|
| 159 | if (VariableFrequencies == null) {
|
---|
| 160 | VariableFrequencies = new DataTable("Variable Frequencies", "Relative frequency of variable references aggregated over the whole population.");
|
---|
| 161 | AddResult("VariableFrequencies", VariableFrequencies);
|
---|
| 162 | // add a data row for each input variable
|
---|
| 163 | foreach (var inputVariable in inputVariables)
|
---|
| 164 | VariableFrequencies.Rows.Add(new DataRow(inputVariable));
|
---|
| 165 | }
|
---|
| 166 | foreach (var pair in VariableFrequencyAnalyser.CalculateVariableFrequencies(expressions, inputVariables)) {
|
---|
| 167 | VariableFrequencies.Rows[pair.Key].Values.Add(pair.Value);
|
---|
| 168 | }
|
---|
| 169 | #endregion
|
---|
[3442] | 170 |
|
---|
[3531] | 171 | #region determination of validation-best solution
|
---|
[3452] | 172 | int validationSamplesStart = ValidationSamplesStart.Value;
|
---|
| 173 | int validationSamplesEnd = ValidationSamplesEnd.Value;
|
---|
| 174 | var validationValues = problemData.Dataset.GetVariableValues(problemData.TargetVariable.Value, validationSamplesStart, validationSamplesEnd);
|
---|
[3513] | 175 | double upperEstimationLimit = UpperEstimationLimit.Value;
|
---|
| 176 | double lowerEstimationLimit = LowerEstimationLimit.Value;
|
---|
[3532] | 177 | var currentBestExpression = (from expression in scaledExpressions
|
---|
[3462] | 178 | let validationQuality =
|
---|
[3532] | 179 | SymbolicRegressionScaledMeanSquaredErrorEvaluator.CalculateWithScaling(
|
---|
| 180 | SymbolicExpressionTreeInterpreter, expression.Expression,
|
---|
[3513] | 181 | lowerEstimationLimit, upperEstimationLimit,
|
---|
[3462] | 182 | problemData.Dataset, problemData.TargetVariable.Value,
|
---|
[3532] | 183 | validationSamplesStart, validationSamplesEnd,
|
---|
| 184 | expression.Beta, expression.Alpha)
|
---|
[3452] | 185 | select new { Expression = expression, ValidationQuality = validationQuality })
|
---|
| 186 | .OrderBy(x => x.ValidationQuality)
|
---|
| 187 | .First();
|
---|
| 188 |
|
---|
| 189 | SymbolicRegressionSolution bestOfRunSolution = BestValidationSolutionParameter.ActualValue;
|
---|
[3531] | 190 | #endregion
|
---|
| 191 | #region update of validation-best solution
|
---|
[3452] | 192 | if (bestOfRunSolution == null) {
|
---|
| 193 | // no best of run solution yet -> make a solution from the currentBestExpression
|
---|
[3532] | 194 | UpdateBestOfRunSolution(problemData, currentBestExpression.Expression.Expression, SymbolicExpressionTreeInterpreter, lowerEstimationLimit, upperEstimationLimit, currentBestExpression.Expression.Alpha, currentBestExpression.Expression.Beta);
|
---|
[3452] | 195 | } else {
|
---|
| 196 | // compare quality of current best with best of run solution
|
---|
| 197 | var estimatedValidationValues = bestOfRunSolution.EstimatedValues.Skip(validationSamplesStart).Take(validationSamplesEnd - validationSamplesStart);
|
---|
| 198 | var bestOfRunValidationQuality = SimpleMSEEvaluator.Calculate(validationValues, estimatedValidationValues);
|
---|
| 199 | if (bestOfRunValidationQuality > currentBestExpression.ValidationQuality) {
|
---|
[3532] | 200 | UpdateBestOfRunSolution(problemData, currentBestExpression.Expression.Expression, SymbolicExpressionTreeInterpreter, lowerEstimationLimit, upperEstimationLimit, currentBestExpression.Expression.Alpha, currentBestExpression.Expression.Beta);
|
---|
[3452] | 201 | }
|
---|
[3442] | 202 | }
|
---|
[3531] | 203 | #endregion
|
---|
[3442] | 204 | return base.Apply();
|
---|
| 205 | }
|
---|
| 206 |
|
---|
[3513] | 207 | private void UpdateBestOfRunSolution(DataAnalysisProblemData problemData, SymbolicExpressionTree tree, ISymbolicExpressionTreeInterpreter interpreter,
|
---|
[3532] | 208 | double lowerEstimationLimit, double upperEstimationLimit,
|
---|
| 209 | double alpha, double beta) {
|
---|
| 210 | var newBestSolution = CreateDataAnalysisSolution(problemData, tree, interpreter, lowerEstimationLimit, upperEstimationLimit, alpha, beta);
|
---|
[3462] | 211 | if (BestValidationSolutionParameter.ActualValue == null)
|
---|
| 212 | BestValidationSolutionParameter.ActualValue = newBestSolution;
|
---|
| 213 | else
|
---|
| 214 | // only update model
|
---|
| 215 | BestValidationSolutionParameter.ActualValue.Model = newBestSolution.Model;
|
---|
[3452] | 216 |
|
---|
[3549] | 217 | AddResult("NumberOfInputVariables", new IntValue(CountInputVariables(tree)));
|
---|
| 218 |
|
---|
[3452] | 219 | var trainingValues = problemData.Dataset.GetVariableValues(problemData.TargetVariable.Value, problemData.TrainingSamplesStart.Value, problemData.TrainingSamplesEnd.Value);
|
---|
| 220 | var testValues = problemData.Dataset.GetVariableValues(problemData.TargetVariable.Value, problemData.TestSamplesStart.Value, problemData.TestSamplesEnd.Value);
|
---|
| 221 |
|
---|
| 222 | AddResult("MeanSquaredError (Training)", new DoubleValue(SimpleMSEEvaluator.Calculate(trainingValues, newBestSolution.EstimatedTrainingValues)));
|
---|
| 223 | AddResult("MeanRelativeError (Training)", new PercentValue(SimpleMeanAbsolutePercentageErrorEvaluator.Calculate(trainingValues, newBestSolution.EstimatedTrainingValues)));
|
---|
| 224 | AddResult("RSquared (Training)", new DoubleValue(SimpleRSquaredEvaluator.Calculate(trainingValues, newBestSolution.EstimatedTrainingValues)));
|
---|
| 225 |
|
---|
| 226 | AddResult("MeanSquaredError (Test)", new DoubleValue(SimpleMSEEvaluator.Calculate(testValues, newBestSolution.EstimatedTestValues)));
|
---|
| 227 | AddResult("MeanRelativeError (Test)", new PercentValue(SimpleMeanAbsolutePercentageErrorEvaluator.Calculate(testValues, newBestSolution.EstimatedTestValues)));
|
---|
| 228 | AddResult("RSquared (Test)", new DoubleValue(SimpleRSquaredEvaluator.Calculate(testValues, newBestSolution.EstimatedTestValues)));
|
---|
| 229 | }
|
---|
| 230 |
|
---|
[3549] | 231 | private int CountInputVariables(SymbolicExpressionTree tree) {
|
---|
| 232 | return (from node in tree.IterateNodesPrefix().OfType<VariableTreeNode>()
|
---|
| 233 | select node.VariableName)
|
---|
| 234 | .Distinct()
|
---|
| 235 | .Count();
|
---|
| 236 | }
|
---|
| 237 |
|
---|
[3452] | 238 | private void AddResult(string resultName, IItem value) {
|
---|
| 239 | var resultCollection = ResultParameter.ActualValue;
|
---|
| 240 | if (resultCollection.ContainsKey(resultName)) {
|
---|
| 241 | resultCollection[resultName].Value = value;
|
---|
| 242 | } else {
|
---|
| 243 | resultCollection.Add(new Result(resultName, value));
|
---|
| 244 | }
|
---|
| 245 | }
|
---|
| 246 |
|
---|
[3532] | 247 | private SymbolicRegressionSolution CreateDataAnalysisSolution(DataAnalysisProblemData problemData, SymbolicExpressionTree tree, ISymbolicExpressionTreeInterpreter interpreter,
|
---|
| 248 | double lowerEstimationLimit, double upperEstimationLimit,
|
---|
| 249 | double alpha, double beta) {
|
---|
| 250 | var mainBranch = tree.Root.SubTrees[0].SubTrees[0];
|
---|
| 251 | var scaledMainBranch = MakeSum(MakeProduct(beta, mainBranch), alpha);
|
---|
| 252 |
|
---|
| 253 | // remove the main branch before cloning to prevent cloning of sub-trees
|
---|
| 254 | tree.Root.SubTrees[0].RemoveSubTree(0);
|
---|
| 255 | var scaledTree = (SymbolicExpressionTree)tree.Clone();
|
---|
| 256 | // insert main branch into the original tree again
|
---|
| 257 | tree.Root.SubTrees[0].InsertSubTree(0, mainBranch);
|
---|
| 258 | // insert the scaled main branch into the cloned tree
|
---|
| 259 | scaledTree.Root.SubTrees[0].InsertSubTree(0, scaledMainBranch);
|
---|
| 260 | // create a new solution using the scaled tree
|
---|
| 261 | var model = new SymbolicRegressionModel(interpreter, scaledTree, problemData.InputVariables.Select(s => s.Value));
|
---|
[3513] | 262 | return new SymbolicRegressionSolution(problemData, model, lowerEstimationLimit, upperEstimationLimit);
|
---|
[3442] | 263 | }
|
---|
[3532] | 264 |
|
---|
| 265 | private SymbolicExpressionTreeNode MakeSum(SymbolicExpressionTreeNode treeNode, double alpha) {
|
---|
| 266 | var node = (new Addition()).CreateTreeNode();
|
---|
| 267 | var alphaConst = MakeConstant(alpha);
|
---|
| 268 | node.AddSubTree(treeNode);
|
---|
| 269 | node.AddSubTree(alphaConst);
|
---|
| 270 | return node;
|
---|
| 271 | }
|
---|
| 272 |
|
---|
| 273 | private SymbolicExpressionTreeNode MakeProduct(double beta, SymbolicExpressionTreeNode treeNode) {
|
---|
| 274 | var node = (new Multiplication()).CreateTreeNode();
|
---|
| 275 | var betaConst = MakeConstant(beta);
|
---|
| 276 | node.AddSubTree(treeNode);
|
---|
| 277 | node.AddSubTree(betaConst);
|
---|
| 278 | return node;
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | private SymbolicExpressionTreeNode MakeConstant(double c) {
|
---|
| 282 | var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
| 283 | node.Value = c;
|
---|
| 284 | return node;
|
---|
| 285 | }
|
---|
[3442] | 286 | }
|
---|
| 287 | }
|
---|