Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/TrainingBestScaledSymbolicRegressionSolutionAnalyzer.cs @ 5815

Last change on this file since 5815 was 5445, checked in by swagner, 14 years ago

Updated year of copyrights (#1406)

File size: 24.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Problems.DataAnalysis.Evaluators;
33using HeuristicLab.Problems.DataAnalysis.Symbolic;
34
35namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
36  /// <summary>
37  /// An operator that analyzes the training best scaled symbolic regression solution.
38  /// </summary>
39  [Item("TrainingBestScaledSymbolicRegressionSolutionAnalyzer", "An operator that analyzes the training best scaled symbolic regression solution.")]
40  [StorableClass]
41  public sealed class TrainingBestScaledSymbolicRegressionSolutionAnalyzer : SingleSuccessorOperator, ISymbolicRegressionAnalyzer {
42    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
43    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
44    private const string QualityParameterName = "Quality";
45    private const string MaximizationParameterName = "Maximization";
46    private const string CalculateSolutionComplexityParameterName = "CalculateSolutionComplexity";
47    private const string CalculateSolutionAccuracyParameterName = "CalculateSolutionAccuracy";
48    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
49    private const string ProblemDataParameterName = "DataAnalysisProblemData";
50    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
51    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
52    private const string BestSolutionParameterName = "Best training solution";
53    private const string BestSolutionQualityParameterName = "Best training solution quality";
54    private const string BestSolutionLengthParameterName = "Best training solution length";
55    private const string BestSolutionHeightParameterName = "Best training solution height";
56    private const string BestSolutionVariablesParameterName = "Best training solution variables";
57    private const string BestSolutionTrainingRSquaredParameterName = "Best training solution R² (training)";
58    private const string BestSolutionTestRSquaredParameterName = "Best training solution R² (test)";
59    private const string BestSolutionTrainingMseParameterName = "Best training solution mean squared error (training)";
60    private const string BestSolutionTestMseParameterName = "Best training solution mean squared error (test)";
61    private const string BestSolutionTrainingRelativeErrorParameterName = "Best training solution relative error (training)";
62    private const string BestSolutionTestRelativeErrorParameterName = "Best training solution relative error (test)";
63    private const string ResultsParameterName = "Results";
64
65    #region parameter properties
66    public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
67      get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
68    }
69    public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
70      get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
71    }
72    public ILookupParameter<BoolValue> MaximizationParameter {
73      get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
74    }
75    public IValueParameter<BoolValue> CalculateSolutionComplexityParameter {
76      get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionComplexityParameterName]; }
77    }
78    public IValueParameter<BoolValue> CalculateSolutionAccuracyParameter {
79      get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionAccuracyParameterName]; }
80    }
81    public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
82      get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
83    }
84    public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
85      get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
86    }
87    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
88      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
89    }
90    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
91      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
92    }
93
94    public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
95      get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
96    }
97    public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
98      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
99    }
100    public ILookupParameter<IntValue> BestSolutionLengthParameter {
101      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionLengthParameterName]; }
102    }
103    public ILookupParameter<IntValue> BestSolutionHeightParameter {
104      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionHeightParameterName]; }
105    }
106    public ILookupParameter<IntValue> BestSolutionVariablesParameter {
107      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionVariablesParameterName]; }
108    }
109    public ILookupParameter<DoubleValue> BestSolutionTrainingRSquaredParameter {
110      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTrainingRSquaredParameterName]; }
111    }
112    public ILookupParameter<DoubleValue> BestSolutionTestRSquaredParameter {
113      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTestRSquaredParameterName]; }
114    }
115    public ILookupParameter<DoubleValue> BestSolutionTrainingMseParameter {
116      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTrainingMseParameterName]; }
117    }
118    public ILookupParameter<DoubleValue> BestSolutionTestMseParameter {
119      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTestMseParameterName]; }
120    }
121    public ILookupParameter<DoubleValue> BestSolutionTrainingRelativeErrorParameter {
122      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTrainingRelativeErrorParameterName]; }
123    }
124    public ILookupParameter<DoubleValue> BestSolutionTestRelativeErrorParameter {
125      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionTestRelativeErrorParameterName]; }
126    }
127    public ILookupParameter<ResultCollection> ResultsParameter {
128      get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
129    }
130    public IValueLookupParameter<BoolValue> ApplyLinearScalingParameter {
131      get { return (IValueLookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
132    }
133    #endregion
134    #region properties
135    public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
136      get { return SymbolicExpressionTreeParameter.ActualValue; }
137    }
138    public ItemArray<DoubleValue> Quality {
139      get { return QualityParameter.ActualValue; }
140    }
141    public BoolValue Maximization {
142      get { return MaximizationParameter.ActualValue; }
143    }
144    public BoolValue CalculateSolutionComplexity {
145      get { return CalculateSolutionComplexityParameter.Value; }
146      set { CalculateSolutionComplexityParameter.Value = value; }
147    }
148    public BoolValue CalculateSolutionAccuracy {
149      get { return CalculateSolutionAccuracyParameter.Value; }
150      set { CalculateSolutionAccuracyParameter.Value = value; }
151    }
152    public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
153      get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
154    }
155    public DataAnalysisProblemData ProblemData {
156      get { return ProblemDataParameter.ActualValue; }
157    }
158    public DoubleValue UpperEstimationLimit {
159      get { return UpperEstimationLimitParameter.ActualValue; }
160    }
161    public DoubleValue LowerEstimationLimit {
162      get { return LowerEstimationLimitParameter.ActualValue; }
163    }
164    public ResultCollection Results {
165      get { return ResultsParameter.ActualValue; }
166    }
167    public SymbolicRegressionSolution BestSolution {
168      get { return BestSolutionParameter.ActualValue; }
169      set { BestSolutionParameter.ActualValue = value; }
170    }
171    public DoubleValue BestSolutionQuality {
172      get { return BestSolutionQualityParameter.ActualValue; }
173      set { BestSolutionQualityParameter.ActualValue = value; }
174    }
175    public IntValue BestSolutionLength {
176      get { return BestSolutionLengthParameter.ActualValue; }
177      set { BestSolutionLengthParameter.ActualValue = value; }
178    }
179    public IntValue BestSolutionHeight {
180      get { return BestSolutionHeightParameter.ActualValue; }
181      set { BestSolutionHeightParameter.ActualValue = value; }
182    }
183    public IntValue BestSolutionVariables {
184      get { return BestSolutionVariablesParameter.ActualValue; }
185      set { BestSolutionVariablesParameter.ActualValue = value; }
186    }
187    public DoubleValue BestSolutionTrainingRSquared {
188      get { return BestSolutionTrainingRSquaredParameter.ActualValue; }
189      set { BestSolutionTrainingRSquaredParameter.ActualValue = value; }
190    }
191    public DoubleValue BestSolutionTestRSquared {
192      get { return BestSolutionTestRSquaredParameter.ActualValue; }
193      set { BestSolutionTestRSquaredParameter.ActualValue = value; }
194    }
195    public DoubleValue BestSolutionTrainingMse {
196      get { return BestSolutionTrainingMseParameter.ActualValue; }
197      set { BestSolutionTrainingMseParameter.ActualValue = value; }
198    }
199    public DoubleValue BestSolutionTestMse {
200      get { return BestSolutionTestMseParameter.ActualValue; }
201      set { BestSolutionTestMseParameter.ActualValue = value; }
202    }
203    public DoubleValue BestSolutionTrainingRelativeError {
204      get { return BestSolutionTrainingRelativeErrorParameter.ActualValue; }
205      set { BestSolutionTrainingRelativeErrorParameter.ActualValue = value; }
206    }
207    public DoubleValue BestSolutionTestRelativeError {
208      get { return BestSolutionTestRelativeErrorParameter.ActualValue; }
209      set { BestSolutionTestRelativeErrorParameter.ActualValue = value; }
210    }
211    public BoolValue ApplyLinearScaling {
212      get { return ApplyLinearScalingParameter.ActualValue; }
213      set { ApplyLinearScalingParameter.ActualValue = value; }
214    }
215    #endregion
216
217    [StorableConstructor]
218    private TrainingBestScaledSymbolicRegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
219    private TrainingBestScaledSymbolicRegressionSolutionAnalyzer(TrainingBestScaledSymbolicRegressionSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
220    public TrainingBestScaledSymbolicRegressionSolutionAnalyzer()
221      : base() {
222      Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(true)));
223      Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
224      Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
225      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(QualityParameterName, "The qualities of the symbolic expression trees to analyze."));
226      Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the training best solution should be calculated.", new BoolValue(true)));
227      Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionAccuracyParameterName, "Determines if the accuracy of the training best solution on the training and test set should be calculated.", new BoolValue(true)));
228      Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
229      Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
230      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
231      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
232      Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
233      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
234      Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic regression solution."));
235      Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic regression solution."));
236      Parameters.Add(new LookupParameter<IntValue>(BestSolutionVariablesParameterName, "The number of variables used by the best symbolic regression solution."));
237      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTrainingRSquaredParameterName, "The R² value on the training set of the best symbolic regression solution."));
238      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTestRSquaredParameterName, "The R² value on the test set of the best symbolic regression solution."));
239      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTrainingMseParameterName, "The mean squared error on the training set of the best symbolic regression solution."));
240      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTestMseParameterName, "The mean squared error value on the test set of the best symbolic regression solution."));
241      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTrainingRelativeErrorParameterName, "The relative error on the training set of the best symbolic regression solution."));
242      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionTestRelativeErrorParameterName, "The relative error value on the test set of the best symbolic regression solution."));
243      Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
244    }
245
246    public override IDeepCloneable Clone(Cloner cloner) {
247      return new TrainingBestScaledSymbolicRegressionSolutionAnalyzer(this, cloner);
248    }
249
250    [StorableHook(HookType.AfterDeserialization)]
251    private void AfterDeserialization() {
252      if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
253        Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(true)));
254      }
255    }
256
257    public override IOperation Apply() {
258      #region find best tree
259      double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
260      SymbolicExpressionTree bestTree = null;
261      SymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray();
262      double[] quality = Quality.Select(x => x.Value).ToArray();
263      for (int i = 0; i < tree.Length; i++) {
264        if ((Maximization.Value && quality[i] > bestQuality) ||
265            (!Maximization.Value && quality[i] < bestQuality)) {
266          bestQuality = quality[i];
267          bestTree = tree[i];
268        }
269      }
270      #endregion
271
272      #region update best solution
273      // if the best tree is better than the current best solution => update
274      bool newBest =
275        BestSolutionQuality == null ||
276        (Maximization.Value && bestQuality > BestSolutionQuality.Value) ||
277        (!Maximization.Value && bestQuality < BestSolutionQuality.Value);
278      if (newBest) {
279        double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
280        double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
281        string targetVariable = ProblemData.TargetVariable.Value;
282
283        if (ApplyLinearScaling.Value) {
284          // calculate scaling parameters and only for the best tree using the full training set
285          double alpha, beta;
286          SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, bestTree,
287            lowerEstimationLimit, upperEstimationLimit,
288            ProblemData.Dataset, targetVariable,
289            ProblemData.TrainingIndizes, out beta, out alpha);
290
291          // scale tree for solution
292          bestTree = SymbolicRegressionSolutionLinearScaler.Scale(bestTree, alpha, beta);
293        }
294        var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
295          bestTree);
296        var solution = new SymbolicRegressionSolution((DataAnalysisProblemData)ProblemData.Clone(), model, lowerEstimationLimit, upperEstimationLimit);
297        solution.Name = BestSolutionParameterName;
298        solution.Description = "Best solution on training partition found over the whole run.";
299
300        BestSolution = solution;
301        BestSolutionQuality = new DoubleValue(bestQuality);
302
303        if (CalculateSolutionComplexity.Value) {
304          BestSolutionLength = new IntValue(solution.Model.SymbolicExpressionTree.Size);
305          BestSolutionHeight = new IntValue(solution.Model.SymbolicExpressionTree.Height);
306          BestSolutionVariables = new IntValue(solution.Model.InputVariables.Count());
307          if (!Results.ContainsKey(BestSolutionLengthParameterName)) {
308            Results.Add(new Result(BestSolutionLengthParameterName, "Length of the best solution on the training set.", BestSolutionLength));
309            Results.Add(new Result(BestSolutionHeightParameterName, "Height of the best solution on the training set.", BestSolutionHeight));
310            Results.Add(new Result(BestSolutionVariablesParameterName, "Number of variables used by the best solution on the training set.", BestSolutionVariables));
311          } else {
312            Results[BestSolutionLengthParameterName].Value = BestSolutionLength;
313            Results[BestSolutionHeightParameterName].Value = BestSolutionHeight;
314            Results[BestSolutionVariablesParameterName].Value = BestSolutionVariables;
315          }
316        }
317
318        if (CalculateSolutionAccuracy.Value) {
319          #region update R2,MSE, Rel Error
320          IEnumerable<double> trainingValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable.Value, ProblemData.TrainingIndizes);
321          IEnumerable<double> testValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable.Value, ProblemData.TestIndizes);
322          OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
323          OnlineMeanAbsolutePercentageErrorEvaluator relErrorEvaluator = new OnlineMeanAbsolutePercentageErrorEvaluator();
324          OnlinePearsonsRSquaredEvaluator r2Evaluator = new OnlinePearsonsRSquaredEvaluator();
325
326          #region training
327          var originalEnumerator = trainingValues.GetEnumerator();
328          var estimatedEnumerator = solution.EstimatedTrainingValues.GetEnumerator();
329          while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
330            mseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
331            r2Evaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
332            relErrorEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
333          }
334          double trainingR2 = r2Evaluator.RSquared;
335          double trainingMse = mseEvaluator.MeanSquaredError;
336          double trainingRelError = relErrorEvaluator.MeanAbsolutePercentageError;
337          #endregion
338
339          mseEvaluator.Reset();
340          relErrorEvaluator.Reset();
341          r2Evaluator.Reset();
342
343          #region test
344          originalEnumerator = testValues.GetEnumerator();
345          estimatedEnumerator = solution.EstimatedTestValues.GetEnumerator();
346          while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
347            mseEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
348            r2Evaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
349            relErrorEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
350          }
351          double testR2 = r2Evaluator.RSquared;
352          double testMse = mseEvaluator.MeanSquaredError;
353          double testRelError = relErrorEvaluator.MeanAbsolutePercentageError;
354          #endregion
355          BestSolutionTrainingRSquared = new DoubleValue(trainingR2);
356          BestSolutionTestRSquared = new DoubleValue(testR2);
357          BestSolutionTrainingMse = new DoubleValue(trainingMse);
358          BestSolutionTestMse = new DoubleValue(testMse);
359          BestSolutionTrainingRelativeError = new DoubleValue(trainingRelError);
360          BestSolutionTestRelativeError = new DoubleValue(testRelError);
361
362          if (!Results.ContainsKey(BestSolutionTrainingRSquaredParameterName)) {
363            Results.Add(new Result(BestSolutionTrainingRSquaredParameterName, BestSolutionTrainingRSquared));
364            Results.Add(new Result(BestSolutionTestRSquaredParameterName, BestSolutionTestRSquared));
365            Results.Add(new Result(BestSolutionTrainingMseParameterName, BestSolutionTrainingMse));
366            Results.Add(new Result(BestSolutionTestMseParameterName, BestSolutionTestMse));
367            Results.Add(new Result(BestSolutionTrainingRelativeErrorParameterName, BestSolutionTrainingRelativeError));
368            Results.Add(new Result(BestSolutionTestRelativeErrorParameterName, BestSolutionTestRelativeError));
369          } else {
370            Results[BestSolutionTrainingRSquaredParameterName].Value = BestSolutionTrainingRSquared;
371            Results[BestSolutionTestRSquaredParameterName].Value = BestSolutionTestRSquared;
372            Results[BestSolutionTrainingMseParameterName].Value = BestSolutionTrainingMse;
373            Results[BestSolutionTestMseParameterName].Value = BestSolutionTestMse;
374            Results[BestSolutionTrainingRelativeErrorParameterName].Value = BestSolutionTrainingRelativeError;
375            Results[BestSolutionTestRelativeErrorParameterName].Value = BestSolutionTestRelativeError;
376          }
377          #endregion
378        }
379
380        if (!Results.ContainsKey(BestSolutionQualityParameterName)) {
381          Results.Add(new Result(BestSolutionQualityParameterName, BestSolutionQuality));
382          Results.Add(new Result(BestSolutionParameterName, BestSolution));
383        } else {
384          Results[BestSolutionQualityParameterName].Value = BestSolutionQuality;
385          Results[BestSolutionParameterName].Value = BestSolution;
386        }
387      }
388      #endregion
389      return base.Apply();
390    }
391  }
392}
Note: See TracBrowser for help on using the repository browser.