#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
[Item("SymbolicRegressionVariableFrequencyAnalyzer", "An operator for analyzing the variable frequencies of symbolic regression solutions given in symbolic expression tree encoding.")]
[StorableClass]
[NonDiscoverableType]
public sealed class SymbolicRegressionVariableFrequencyAnalyzer : SingleSuccessorOperator, ISymbolicRegressionAnalyzer {
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string ProblemDataParameterName = "ProblemData";
private const string VariableFrequenciesParameterName = "VariableFrequencies";
private const string ResultsParameterName = "Results";
#region parameter properties
public ScopeTreeLookupParameter SymbolicExpressionTreeParameter {
get { return (ScopeTreeLookupParameter)Parameters[SymbolicExpressionTreeParameterName]; }
}
public ILookupParameter VariableFrequenciesParameter {
get { return (ILookupParameter)Parameters[VariableFrequenciesParameterName]; }
}
public ILookupParameter ProblemDataParameter {
get { return (ILookupParameter)Parameters[ProblemDataParameterName]; }
}
public ILookupParameter ResultsParameter {
get { return (ILookupParameter)Parameters[ResultsParameterName]; }
}
#endregion
#region properties
public DataTable VariableFrequencies {
get { return VariableFrequenciesParameter.ActualValue; }
set { VariableFrequenciesParameter.ActualValue = value; }
}
#endregion
[StorableConstructor]
private SymbolicRegressionVariableFrequencyAnalyzer(bool deserializing) : base(deserializing) { }
private SymbolicRegressionVariableFrequencyAnalyzer(SymbolicRegressionVariableFrequencyAnalyzer original, Cloner cloner) : base(original, cloner) { }
public SymbolicRegressionVariableFrequencyAnalyzer()
: base() {
Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
Parameters.Add(new LookupParameter(ProblemDataParameterName, "The problem data containing the input varaibles for the symbolic regression problem."));
Parameters.Add(new ValueLookupParameter(VariableFrequenciesParameterName, "The data table to store the variable frequencies."));
Parameters.Add(new LookupParameter(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionVariableFrequencyAnalyzer(this, cloner);
}
public override IOperation Apply() {
ItemArray expressions = SymbolicExpressionTreeParameter.ActualValue;
DataAnalysisProblemData problemData = ProblemDataParameter.ActualValue;
var inputVariables = problemData.InputVariables.CheckedItems.Select(x => x.Value.Value);
ResultCollection results = ResultsParameter.ActualValue;
if (VariableFrequencies == null) {
VariableFrequencies = new DataTable("Variable frequencies", "Relative frequency of variable references aggregated over the whole population.");
VariableFrequencies.VisualProperties.XAxisTitle = "Generation";
VariableFrequencies.VisualProperties.YAxisTitle = "Relative Variable Frequency";
// add a data row for each input variable
foreach (var inputVariable in inputVariables) {
DataRow row = new DataRow(inputVariable);
row.VisualProperties.StartIndexZero = true;
VariableFrequencies.Rows.Add(row);
}
results.Add(new Result("Variable frequencies", VariableFrequencies));
}
foreach (var pair in VariableFrequencyAnalyser.CalculateVariableFrequencies(expressions, inputVariables)) {
VariableFrequencies.Rows[pair.Key].Values.Add(pair.Value);
results["Variable frequencies"].Value = VariableFrequencies;
}
return base.Apply();
}
}
}