#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using System.Collections.Generic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Evaluators;
using HeuristicLab.Analysis;
namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
[Item("BestSymbolicRegressionSolutionAnalyzer", "An operator for analyzing the best solution of symbolic regression problems given in symbolic expression tree encoding.")]
[StorableClass]
public sealed class BestSymbolicRegressionSolutionAnalyzer : RegressionSolutionAnalyzer, ISymbolicRegressionAnalyzer {
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
private const string BestSolutionInputvariableCountResultName = "Variables used by best solution";
private const string VariableFrequenciesParameterName = "VariableFrequencies";
private const string VariableImpactsResultName = "Integrated variable frequencies";
private const string BestSolutionParameterName = "BestSolution";
#region parameter properties
public ScopeTreeLookupParameter SymbolicExpressionTreeParameter {
get { return (ScopeTreeLookupParameter)Parameters[SymbolicExpressionTreeParameterName]; }
}
public IValueLookupParameter SymbolicExpressionTreeInterpreterParameter {
get { return (IValueLookupParameter)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
}
public ILookupParameter BestSolutionParameter {
get { return (ILookupParameter)Parameters[BestSolutionParameterName]; }
}
public ILookupParameter VariableFrequenciesParameter {
get { return (ILookupParameter)Parameters[VariableFrequenciesParameterName]; }
}
#endregion
#region properties
public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
}
public ItemArray SymbolicExpressionTree {
get { return SymbolicExpressionTreeParameter.ActualValue; }
}
public DataTable VariableFrequencies {
get { return VariableFrequenciesParameter.ActualValue; }
}
#endregion
public BestSymbolicRegressionSolutionAnalyzer()
: base() {
Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
Parameters.Add(new ValueLookupParameter(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
Parameters.Add(new LookupParameter(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
Parameters.Add(new LookupParameter(BestSolutionParameterName, "The best symbolic regression solution."));
}
[StorableHook(HookType.AfterDeserialization)]
private void Initialize() {
if (!Parameters.ContainsKey(VariableFrequenciesParameterName)) {
Parameters.Add(new LookupParameter(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
}
}
protected override DataAnalysisSolution UpdateBestSolution() {
double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
int i = Quality.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index;
if (BestSolutionQualityParameter.ActualValue == null || BestSolutionQualityParameter.ActualValue.Value > Quality[i].Value) {
var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
SymbolicExpressionTree[i]);
var solution = new SymbolicRegressionSolution(ProblemData, model, lowerEstimationLimit, upperEstimationLimit);
solution.Name = BestSolutionParameterName;
solution.Description = "Best solution on validation partition found over the whole run.";
BestSolutionParameter.ActualValue = solution;
BestSolutionQualityParameter.ActualValue = Quality[i];
BestSymbolicRegressionSolutionAnalyzer.UpdateSymbolicRegressionBestSolutionResults(solution, ProblemData, Results, VariableFrequencies);
}
return BestSolutionParameter.ActualValue;
}
public static void UpdateBestSolutionResults(SymbolicRegressionSolution bestSolution, DataAnalysisProblemData problemData, ResultCollection results, IntValue currentGeneration, DataTable variableFrequencies) {
RegressionSolutionAnalyzer.UpdateBestSolutionResults(bestSolution, problemData, results, currentGeneration);
UpdateSymbolicRegressionBestSolutionResults(bestSolution, problemData, results, variableFrequencies);
}
private static void UpdateSymbolicRegressionBestSolutionResults(SymbolicRegressionSolution bestSolution, DataAnalysisProblemData problemData, ResultCollection results, DataTable variableFrequencies) {
if (results.ContainsKey(BestSolutionInputvariableCountResultName)) {
results[BestSolutionInputvariableCountResultName].Value = new IntValue(bestSolution.Model.InputVariables.Count());
results[VariableImpactsResultName].Value = CalculateVariableImpacts(variableFrequencies);
} else {
results.Add(new Result(BestSolutionInputvariableCountResultName, new IntValue(bestSolution.Model.InputVariables.Count())));
results.Add(new Result(VariableImpactsResultName, CalculateVariableImpacts(variableFrequencies)));
}
}
private static DoubleMatrix CalculateVariableImpacts(DataTable variableFrequencies) {
if (variableFrequencies != null) {
var impacts = new DoubleMatrix(variableFrequencies.Rows.Count, 1, new string[] { "Impact" }, variableFrequencies.Rows.Select(x => x.Name));
impacts.SortableView = true;
int rowIndex = 0;
foreach (var dataRow in variableFrequencies.Rows) {
string variableName = dataRow.Name;
double integral = 0;
if (dataRow.Values.Count > 1) {
double baseline = dataRow.Values.First();
integral = (from value in dataRow.Values
select value - baseline)
.Sum();
integral /= dataRow.Values.Count;
}
impacts[rowIndex++, 0] = integral;
}
return impacts;
} else return new DoubleMatrix(1, 1);
}
}
}