#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
namespace HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression {
///
/// A base class for operators which evaluates OneMax solutions given in BinaryVector encoding.
///
[Item("LinearRegressionSolutionCreator", "Uses linear regression to create a structure tree.")]
[StorableClass]
public class LinearRegressionSolutionCreator : SingleSuccessorOperator, ISolutionCreator {
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
private const string SamplesStartParameterName = "SamplesStart";
private const string SamplesEndParameterName = "SamplesEnd";
public LinearRegressionSolutionCreator() {
Parameters.Add(new LookupParameter(SymbolicExpressionTreeParameterName, "The resulting solution encoded as a symbolic expression tree."));
Parameters.Add(new LookupParameter(DataAnalysisProblemDataParameterName, "The problem data on which the linear regression should be calculated."));
Parameters.Add(new ValueLookupParameter(SamplesStartParameterName, "The start of the samples on which the linear regression should be applied."));
Parameters.Add(new ValueLookupParameter(SamplesEndParameterName, "The end of the samples on which the linear regression should be applied."));
}
[StorableConstructor]
public LinearRegressionSolutionCreator(bool deserializing)
: base(deserializing) {
}
#region parameter properties
public ILookupParameter SymbolicExpressionTreeParameter {
get { return (ILookupParameter)Parameters[SymbolicExpressionTreeParameterName]; }
}
public SymbolicExpressionTree SymbolicExpressionTree {
get { return SymbolicExpressionTreeParameter.ActualValue; }
set { SymbolicExpressionTreeParameter.ActualValue = value; }
}
public ILookupParameter DataAnalysisProblemDataParameter {
get { return (ILookupParameter)Parameters[DataAnalysisProblemDataParameterName]; }
}
public DataAnalysisProblemData DataAnalysisProblemData {
get { return DataAnalysisProblemDataParameter.ActualValue; }
set { DataAnalysisProblemDataParameter.ActualValue = value; }
}
public IValueLookupParameter SamplesStartParameter {
get { return (IValueLookupParameter)Parameters[SamplesStartParameterName]; }
}
public IntValue SamplesStart {
get { return SamplesStartParameter.ActualValue; }
set { SamplesStartParameter.ActualValue = value; }
}
public IValueLookupParameter SamplesEndParameter {
get { return (IValueLookupParameter)Parameters[SamplesEndParameterName]; }
}
public IntValue SamplesEnd {
get { return SamplesEndParameter.ActualValue; }
set { SamplesEndParameter.ActualValue = value; }
}
#endregion
public override IOperation Apply() {
double rmsError, cvRmsError;
SymbolicExpressionTree = CreateSymbolicExpressionTree(DataAnalysisProblemData.Dataset, DataAnalysisProblemData.TargetVariable.Value, DataAnalysisProblemData.InputVariables.CheckedItems.Select(x => x.Value.Value), SamplesStart.Value, SamplesEnd.Value, out rmsError, out cvRmsError);
return base.Apply();
}
public static SymbolicExpressionTree CreateSymbolicExpressionTree(Dataset dataset, string targetVariable, IEnumerable allowedInputVariables, int start, int end, out double rmsError, out double cvRmsError) {
double[,] inputMatrix = LinearRegressionUtil.PrepareInputMatrix(dataset, targetVariable, allowedInputVariables, start, end);
alglib.linreg.linearmodel lm = new alglib.linreg.linearmodel();
alglib.linreg.lrreport ar = new alglib.linreg.lrreport();
int nRows = inputMatrix.GetLength(0);
int nFeatures = inputMatrix.GetLength(1) - 1;
double[] coefficients = new double[nFeatures + 1]; //last coefficient is for the constant
int retVal = 1;
alglib.linreg.lrbuild(ref inputMatrix, nRows, nFeatures, ref retVal, ref lm, ref ar);
if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression model");
rmsError = ar.rmserror;
cvRmsError = ar.cvrmserror;
for (int i = 0; i < nFeatures + 1; i++)
coefficients[i] = lm.w[i + 4];
SymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
SymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
tree.Root.AddSubTree(startNode);
SymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
startNode.AddSubTree(addition);
int col = 0;
foreach (string column in allowedInputVariables) {
VariableTreeNode vNode = (VariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable().CreateTreeNode();
vNode.VariableName = column;
vNode.Weight = coefficients[col];
addition.AddSubTree(vNode);
col++;
}
ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
cNode.Value = coefficients[coefficients.Length - 1];
addition.AddSubTree(cNode);
return tree;
}
}
}