#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols; namespace HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression { /// /// A base class for operators which evaluates OneMax solutions given in BinaryVector encoding. /// [Item("LinearRegressionSolutionCreator", "Uses linear regression to create a structure tree.")] [StorableClass] public class LinearRegressionSolutionCreator : SingleSuccessorOperator, ISolutionCreator { private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree"; private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData"; private const string SamplesStartParameterName = "SamplesStart"; private const string SamplesEndParameterName = "SamplesEnd"; public LinearRegressionSolutionCreator() { Parameters.Add(new LookupParameter(SymbolicExpressionTreeParameterName, "The resulting solution encoded as a symbolic expression tree.")); Parameters.Add(new LookupParameter(DataAnalysisProblemDataParameterName, "The problem data on which the linear regression should be calculated.")); Parameters.Add(new ValueLookupParameter(SamplesStartParameterName, "The start of the samples on which the linear regression should be applied.")); Parameters.Add(new ValueLookupParameter(SamplesEndParameterName, "The end of the samples on which the linear regression should be applied.")); } [StorableConstructor] public LinearRegressionSolutionCreator(bool deserializing) : base(deserializing) { } #region parameter properties public ILookupParameter SymbolicExpressionTreeParameter { get { return (ILookupParameter)Parameters[SymbolicExpressionTreeParameterName]; } } public SymbolicExpressionTree SymbolicExpressionTree { get { return SymbolicExpressionTreeParameter.ActualValue; } set { SymbolicExpressionTreeParameter.ActualValue = value; } } public ILookupParameter DataAnalysisProblemDataParameter { get { return (ILookupParameter)Parameters[DataAnalysisProblemDataParameterName]; } } public DataAnalysisProblemData DataAnalysisProblemData { get { return DataAnalysisProblemDataParameter.ActualValue; } set { DataAnalysisProblemDataParameter.ActualValue = value; } } public IValueLookupParameter SamplesStartParameter { get { return (IValueLookupParameter)Parameters[SamplesStartParameterName]; } } public IntValue SamplesStart { get { return SamplesStartParameter.ActualValue; } set { SamplesStartParameter.ActualValue = value; } } public IValueLookupParameter SamplesEndParameter { get { return (IValueLookupParameter)Parameters[SamplesEndParameterName]; } } public IntValue SamplesEnd { get { return SamplesEndParameter.ActualValue; } set { SamplesEndParameter.ActualValue = value; } } #endregion public override IOperation Apply() { double rmsError, cvRmsError; SymbolicExpressionTree = CreateSymbolicExpressionTree(DataAnalysisProblemData.Dataset, DataAnalysisProblemData.TargetVariable.Value, DataAnalysisProblemData.InputVariables.CheckedItems.Select(x => x.Value.Value), SamplesStart.Value, SamplesEnd.Value, out rmsError, out cvRmsError); return base.Apply(); } public static SymbolicExpressionTree CreateSymbolicExpressionTree(Dataset dataset, string targetVariable, IEnumerable allowedInputVariables, int start, int end, out double rmsError, out double cvRmsError) { double[,] inputMatrix = LinearRegressionUtil.PrepareInputMatrix(dataset, targetVariable, allowedInputVariables, start, end); alglib.linreg.linearmodel lm = new alglib.linreg.linearmodel(); alglib.linreg.lrreport ar = new alglib.linreg.lrreport(); int nRows = inputMatrix.GetLength(0); int nFeatures = inputMatrix.GetLength(1) - 1; double[] coefficients = new double[nFeatures + 1]; //last coefficient is for the constant int retVal = 1; alglib.linreg.lrbuild(ref inputMatrix, nRows, nFeatures, ref retVal, ref lm, ref ar); if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression model"); rmsError = ar.rmserror; cvRmsError = ar.cvrmserror; for (int i = 0; i < nFeatures + 1; i++) coefficients[i] = lm.w[i + 4]; SymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode()); SymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode(); tree.Root.AddSubTree(startNode); SymbolicExpressionTreeNode addition = new Addition().CreateTreeNode(); startNode.AddSubTree(addition); int col = 0; foreach (string column in allowedInputVariables) { VariableTreeNode vNode = (VariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable().CreateTreeNode(); vNode.VariableName = column; vNode.Weight = coefficients[col]; addition.AddSubTree(vNode); col++; } ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode(); cNode.Value = coefficients[coefficients.Length - 1]; addition.AddSubTree(cNode); return tree; } } }