1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic.Evaluators;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.MultiVariate.Regression.Symbolic.Analyzers {
|
---|
36 | /// <summary>
|
---|
37 | /// An operator that analyzes the validation best scaled symbolic vector regression solution.
|
---|
38 | /// </summary>
|
---|
39 | [Item("ValidationBestScaledSymbolicVectorRegressionSolutionAnalyzer", "An operator that analyzes the validation best scaled symbolic vector regression solution.")]
|
---|
40 | [StorableClass]
|
---|
41 | public sealed class ValidationBestScaledSymbolicVectorRegressionSolutionAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
42 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
43 | private const string ScaledSymbolicExpressionTreeParameterName = "ScaledSymbolicExpressionTree";
|
---|
44 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
45 | private const string ProblemDataParameterName = "ProblemData";
|
---|
46 | private const string TrainingSamplesStartParameterName = "TrainingSamplesStart";
|
---|
47 | private const string TrainingSamplesEndParameterName = "TrainingSamplesEnd";
|
---|
48 | private const string ValidationSamplesStartParameterName = "ValidationSamplesStart";
|
---|
49 | private const string ValidationSamplesEndParameterName = "ValidationSamplesEnd";
|
---|
50 | private const string TestSamplesStartParameterName = "TestSamplesStart";
|
---|
51 | private const string TestSamplesEndParameterName = "TestSamplesEnd";
|
---|
52 | private const string QualityParameterName = "Quality";
|
---|
53 | private const string ScaledQualityParameterName = "ScaledQuality";
|
---|
54 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
55 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
56 | private const string AlphaParameterName = "Alpha";
|
---|
57 | private const string BetaParameterName = "Beta";
|
---|
58 | private const string BestSolutionParameterName = "Best solution (validation)";
|
---|
59 | private const string BestSolutionQualityParameterName = "Best solution quality (validation)";
|
---|
60 | private const string CurrentBestValidationQualityParameterName = "Current best validation quality";
|
---|
61 | private const string BestSolutionQualityValuesParameterName = "Validation Quality";
|
---|
62 | private const string ResultsParameterName = "Results";
|
---|
63 | private const string BestKnownQualityParameterName = "BestKnownQuality";
|
---|
64 |
|
---|
65 | #region parameter properties
|
---|
66 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
67 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
68 | }
|
---|
69 | public ScopeTreeLookupParameter<DoubleArray> AlphaParameter {
|
---|
70 | get { return (ScopeTreeLookupParameter<DoubleArray>)Parameters[AlphaParameterName]; }
|
---|
71 | }
|
---|
72 | public ScopeTreeLookupParameter<DoubleArray> BetaParameter {
|
---|
73 | get { return (ScopeTreeLookupParameter<DoubleArray>)Parameters[BetaParameterName]; }
|
---|
74 | }
|
---|
75 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
76 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
77 | }
|
---|
78 | public IValueLookupParameter<MultiVariateDataAnalysisProblemData> ProblemDataParameter {
|
---|
79 | get { return (IValueLookupParameter<MultiVariateDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
80 | }
|
---|
81 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
82 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
83 | }
|
---|
84 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
85 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
86 | }
|
---|
87 | public IValueLookupParameter<DoubleArray> UpperEstimationLimitParameter {
|
---|
88 | get { return (IValueLookupParameter<DoubleArray>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
89 | }
|
---|
90 | public IValueLookupParameter<DoubleArray> LowerEstimationLimitParameter {
|
---|
91 | get { return (IValueLookupParameter<DoubleArray>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
92 | }
|
---|
93 | public ILookupParameter<SymbolicExpressionTree> BestSolutionParameter {
|
---|
94 | get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[BestSolutionParameterName]; }
|
---|
95 | }
|
---|
96 | public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
|
---|
97 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
|
---|
98 | }
|
---|
99 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
100 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
101 | }
|
---|
102 | public ILookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
103 | get { return (ILookupParameter<DoubleValue>)Parameters[BestKnownQualityParameterName]; }
|
---|
104 | }
|
---|
105 | #endregion
|
---|
106 | #region properties
|
---|
107 | public MultiVariateDataAnalysisProblemData ProblemData {
|
---|
108 | get { return ProblemDataParameter.ActualValue; }
|
---|
109 | }
|
---|
110 | public ItemArray<DoubleArray> Alpha {
|
---|
111 | get { return AlphaParameter.ActualValue; }
|
---|
112 | }
|
---|
113 | public ItemArray<DoubleArray> Beta {
|
---|
114 | get { return BetaParameter.ActualValue; }
|
---|
115 | }
|
---|
116 | public DoubleArray LowerEstimationLimit {
|
---|
117 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
118 | }
|
---|
119 | public DoubleArray UpperEstimationLimit {
|
---|
120 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
121 | }
|
---|
122 | #endregion
|
---|
123 |
|
---|
124 | public ValidationBestScaledSymbolicVectorRegressionSolutionAnalyzer()
|
---|
125 | : base() {
|
---|
126 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
127 | Parameters.Add(new ScopeTreeLookupParameter<DoubleArray>(AlphaParameterName, "The alpha parameter for linear scaling."));
|
---|
128 | Parameters.Add(new ScopeTreeLookupParameter<DoubleArray>(BetaParameterName, "The beta parameter for linear scaling."));
|
---|
129 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
130 | Parameters.Add(new ValueLookupParameter<MultiVariateDataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
131 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
132 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
133 | Parameters.Add(new ValueLookupParameter<DoubleArray>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
134 | Parameters.Add(new ValueLookupParameter<DoubleArray>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
135 | Parameters.Add(new LookupParameter<SymbolicExpressionTree>(BestSolutionParameterName, "The best symbolic regression solution."));
|
---|
136 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
|
---|
137 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
|
---|
138 | Parameters.Add(new LookupParameter<DoubleValue>(BestKnownQualityParameterName, "The best known (validation) quality achieved on the data set."));
|
---|
139 |
|
---|
140 | }
|
---|
141 |
|
---|
142 | public override IOperation Apply() {
|
---|
143 | var trees = SymbolicExpressionTreeParameter.ActualValue;
|
---|
144 | IEnumerable<SymbolicExpressionTree> scaledTrees;
|
---|
145 | if (Alpha.Length == trees.Length) {
|
---|
146 | scaledTrees = from i in Enumerable.Range(0, trees.Length)
|
---|
147 | select SymbolicVectorRegressionSolutionLinearScaler.Scale(trees[i], Beta[i].ToArray(), Alpha[i].ToArray());
|
---|
148 | } else {
|
---|
149 | scaledTrees = trees;
|
---|
150 | }
|
---|
151 | IEnumerable<string> selectedTargetVariables = from item in ProblemData.TargetVariables.CheckedItems
|
---|
152 | select item.Value.Value;
|
---|
153 | var interpreter = SymbolicExpressionTreeInterpreterParameter.ActualValue;
|
---|
154 | int validationStart = ValidationSamplesStartParameter.ActualValue.Value;
|
---|
155 | int validationEnd = ValidationSamplesEndParameter.ActualValue.Value;
|
---|
156 | IEnumerable<int> rows = Enumerable.Range(validationStart, validationEnd - validationStart);
|
---|
157 | SymbolicExpressionTree bestTree = null;
|
---|
158 | double bestValidationError = double.PositiveInfinity;
|
---|
159 | foreach (var tree in scaledTrees) {
|
---|
160 | // calculate error on validation set
|
---|
161 | double validationMse = SymbolicVectorRegressionNormalizedMseEvaluator.Calculate(tree, interpreter, ProblemData, selectedTargetVariables, rows, LowerEstimationLimit, UpperEstimationLimit);
|
---|
162 | if (bestValidationError > validationMse) {
|
---|
163 | bestValidationError = validationMse;
|
---|
164 | bestTree = tree;
|
---|
165 | }
|
---|
166 | }
|
---|
167 | if (BestSolutionQualityParameter.ActualValue == null || BestSolutionQualityParameter.ActualValue.Value > bestValidationError) {
|
---|
168 | var bestSolution = bestTree;
|
---|
169 |
|
---|
170 | //bestSolution.Name = BestSolutionParameterName;
|
---|
171 | //solution.Description = "Best solution on validation partition found over the whole run.";
|
---|
172 |
|
---|
173 | BestSolutionParameter.ActualValue = bestSolution;
|
---|
174 | BestSolutionQualityParameter.ActualValue = new DoubleValue(bestValidationError);
|
---|
175 | }
|
---|
176 |
|
---|
177 | // update results
|
---|
178 | var results = ResultsParameter.ActualValue;
|
---|
179 | if (!results.ContainsKey(BestSolutionQualityValuesParameterName)) {
|
---|
180 | results.Add(new Result(BestSolutionParameterName, BestSolutionParameter.ActualValue));
|
---|
181 | results.Add(new Result(BestSolutionQualityValuesParameterName, new DataTable(BestSolutionQualityValuesParameterName, BestSolutionQualityValuesParameterName)));
|
---|
182 | results.Add(new Result(BestSolutionQualityParameterName, new DoubleValue()));
|
---|
183 | results.Add(new Result(CurrentBestValidationQualityParameterName, new DoubleValue()));
|
---|
184 | }
|
---|
185 | results[BestSolutionParameterName].Value = BestSolutionParameter.ActualValue;
|
---|
186 | results[BestSolutionQualityParameterName].Value = new DoubleValue(BestSolutionQualityParameter.ActualValue.Value);
|
---|
187 | results[CurrentBestValidationQualityParameterName].Value = new DoubleValue(bestValidationError);
|
---|
188 |
|
---|
189 | DataTable validationValues = (DataTable)results[BestSolutionQualityValuesParameterName].Value;
|
---|
190 | AddValue(validationValues, BestSolutionQualityParameter.ActualValue.Value, BestSolutionQualityParameterName, BestSolutionQualityParameterName);
|
---|
191 | AddValue(validationValues, bestValidationError, CurrentBestValidationQualityParameterName, CurrentBestValidationQualityParameterName);
|
---|
192 |
|
---|
193 | return base.Apply();
|
---|
194 | }
|
---|
195 |
|
---|
196 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
197 | DataRow row;
|
---|
198 | table.Rows.TryGetValue(name, out row);
|
---|
199 | if (row == null) {
|
---|
200 | row = new DataRow(name, description);
|
---|
201 | row.Values.Add(data);
|
---|
202 | table.Rows.Add(row);
|
---|
203 | } else {
|
---|
204 | row.Values.Add(data);
|
---|
205 | }
|
---|
206 | }
|
---|
207 | }
|
---|
208 | }
|
---|