#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Classification {
[Item("Classification Problem", "Represents a classfication problem.")]
[StorableClass]
public abstract class SingleObjectiveClassificationProblem : SingleObjectiveProblem, ISingleObjectiveDataAnalysisProblem
where T : class, ISingleObjectiveEvaluator
where U : class, ISolutionCreator {
private const string ClassificationProblemDataParameterName = "ClassificationProblemData";
public IValueParameter ClassificationProblemDataParameter {
get { return (IValueParameter)Parameters[ClassificationProblemDataParameterName]; }
}
public ClassificationProblemData ClassificationProblemData {
get { return ClassificationProblemDataParameter.Value; }
set { ClassificationProblemDataParameter.Value = value; }
}
DataAnalysisProblemData IDataAnalysisProblem.DataAnalysisProblemData {
get { return ClassificationProblemData; }
}
[StorableConstructor]
protected SingleObjectiveClassificationProblem(bool deserializing) : base(deserializing) { }
public SingleObjectiveClassificationProblem()
: base() {
Parameters.Add(new ValueParameter(ClassificationProblemDataParameterName, "The data set, target variable and input variables of the data analysis problem."));
ClassificationProblemData = new ClassificationProblemData();
RegisterParameterEvents();
RegisterParameterValueEvents();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserializationHook() {
RegisterParameterEvents();
RegisterParameterValueEvents();
}
public override IDeepCloneable Clone(Cloner cloner) {
SingleObjectiveClassificationProblem clone = (SingleObjectiveClassificationProblem)base.Clone(cloner);
clone.RegisterParameterEvents();
clone.RegisterParameterValueEvents();
return clone;
}
private void RegisterParameterEvents() {
ClassificationProblemDataParameter.ValueChanged += new EventHandler(ClassificationProblemDataParameter_ValueChanged);
}
private void RegisterParameterValueEvents() {
ClassificationProblemData.ProblemDataChanged += new EventHandler(ClassificationProblemData_ProblemDataChanged);
}
protected virtual void OnClassificationProblemDataChanged() {
OnReset();
}
private void ClassificationProblemDataParameter_ValueChanged(object sender, System.EventArgs e) {
RegisterParameterValueEvents();
OnClassificationProblemDataChanged();
}
private void ClassificationProblemData_ProblemDataChanged(object sender, System.EventArgs e) {
OnClassificationProblemDataChanged();
}
}
}