#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using HeuristicLab.Core;
using HeuristicLab.Common;
using HeuristicLab.Data;
using HeuristicLab.DataAnalysis;
using System.Linq;
namespace HeuristicLab.Modeling {
public class VariableEvaluationImpactCalculator : OperatorBase {
public VariableEvaluationImpactCalculator()
: base() {
AddVariableInfo(new VariableInfo("Predictor", "The predictor used to evaluate the model", typeof(IPredictor), VariableKind.In));
AddVariableInfo(new VariableInfo("Dataset", "Dataset", typeof(Dataset), VariableKind.In));
AddVariableInfo(new VariableInfo("TargetVariable", "TargetVariable", typeof(StringData), VariableKind.In));
AddVariableInfo(new VariableInfo("InputVariableNames", "Names of used variables in the model (optional)", typeof(ItemList), VariableKind.In));
AddVariableInfo(new VariableInfo("SamplesStart", "TrainingSamplesStart", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("SamplesEnd", "TrainingSamplesEnd", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo(ModelingResult.VariableEvaluationImpact.ToString(), "VariableEvaluationImpacts", typeof(ItemList), VariableKind.New));
}
public override string Description {
get { return @"Calculates the impact of all allowed input variables on the model outputs using evaluator supplied as suboperator."; }
}
public override IOperation Apply(IScope scope) {
IPredictor predictor = GetVariableValue("Predictor", scope, true);
Dataset dataset = GetVariableValue("Dataset", scope, true);
string targetVariableName = GetVariableValue("TargetVariable", scope, true).Data;
int targetVariable = dataset.GetVariableIndex(targetVariableName);
ItemList inputVariableNames = GetVariableValue>("InputVariableNames", scope, true, false);
int start = GetVariableValue("SamplesStart", scope, true).Data;
int end = GetVariableValue("SamplesEnd", scope, true).Data;
Dictionary evaluationImpacts;
if (inputVariableNames == null)
evaluationImpacts = Calculate(dataset, predictor, targetVariableName, start, end);
else
evaluationImpacts = Calculate(dataset, predictor, targetVariableName, inputVariableNames.Select(iv => iv.Data), start, end);
ItemList variableImpacts = new ItemList();
foreach (KeyValuePair p in evaluationImpacts) {
if (p.Key != targetVariableName) {
ItemList row = new ItemList();
row.Add(new StringData(p.Key));
row.Add(new DoubleData(p.Value));
variableImpacts.Add(row);
}
}
scope.AddVariable(new Variable(scope.TranslateName(ModelingResult.VariableEvaluationImpact.ToString()), variableImpacts));
return null;
}
public static Dictionary Calculate(Dataset dataset, IPredictor predictor, string targetVariableName, int start, int end) {
return Calculate(dataset, predictor, targetVariableName, null, start, end);
}
public static Dictionary Calculate(Dataset dataset, IPredictor predictor, string targetVariableName, IEnumerable inputVariableNames, int start, int end) {
Dictionary evaluationImpacts = new Dictionary();
Dataset dirtyDataset = (Dataset)dataset.Clone();
IPredictor dirtyPredictor = (IPredictor)predictor.Clone();
double[] referenceValues = predictor.Predict(dataset, start, end).ToArray();
double mean;
IEnumerable oldValues;
double[] newValues;
IEnumerable variables;
if (inputVariableNames != null)
variables = inputVariableNames;
else
variables = dataset.VariableNames;
foreach (string variableName in variables) {
if (variableName != targetVariableName) {
if (dataset.CountMissingValues(variableName, start, end) < (end - start) && dataset.GetRange(variableName, start, end) > 0.0) {
mean = dataset.GetMean(variableName, start, end);
oldValues = dirtyDataset.ReplaceVariableValues(variableName, Enumerable.Repeat(mean, end - start), start, end);
newValues = dirtyPredictor.Predict(dirtyDataset, start, end).ToArray();
evaluationImpacts[variableName] = 1 - CalculateVAF(referenceValues, newValues);
dirtyDataset.ReplaceVariableValues(variableName, oldValues, start, end);
} else {
evaluationImpacts[variableName] = 0.0;
}
}
}
return evaluationImpacts;
}
private static double CalculateVAF(double[] referenceValues, double[] newValues) {
try {
return SimpleVarianceAccountedForEvaluator.Calculate(Matrix.Create(referenceValues, newValues));
}
catch (ArgumentException) {
return double.PositiveInfinity;
}
}
}
}