#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Common;
using HeuristicLab.Data;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.Modeling {
///
/// The Variance Accounted For (VAF) function calculates is computed as
/// VAF(y,y') = ( 1 - var(y-y')/var(y) )
/// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
///
public class SimpleVarianceAccountedForEvaluator : SimpleEvaluatorBase {
public override string OutputVariableName {
get {
return "VAF";
}
}
public override double Evaluate(double[,] values) {
try {
return Calculate(values);
}
catch (ArgumentException) {
return double.NegativeInfinity;
}
}
public static double Calculate(double[,] values) {
int n = values.GetLength(0);
double[] errors = new double[n];
double[] originalTargetVariableValues = new double[n];
for (int i = 0; i < n; i++) {
double estimated = values[i, ESTIMATION_INDEX];
double original = values[i, ORIGINAL_INDEX];
if (!double.IsNaN(estimated) && !double.IsInfinity(estimated) &&
!double.IsNaN(original) && !double.IsInfinity(original)) {
errors[i] = original - estimated;
originalTargetVariableValues[i] = original;
} else {
errors[i] = double.NaN;
originalTargetVariableValues[i] = double.NaN;
}
}
double errorsVariance = Statistics.Variance(errors);
double originalsVariance = Statistics.Variance(originalTargetVariableValues);
if (originalsVariance.IsAlmost(0.0))
if (errorsVariance.IsAlmost(0.0)) {
return 1.0;
} else {
throw new ArgumentException("Variance of original values is zero");
} else {
return 1.0 - errorsVariance / originalsVariance;
}
}
}
}