#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.DataAnalysis; namespace HeuristicLab.Modeling { /// /// The Variance Accounted For (VAF) function calculates is computed as /// VAF(y,y') = ( 1 - var(y-y')/var(y) ) /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x. /// public class SimpleVarianceAccountedForEvaluator : SimpleEvaluatorBase { public override string OutputVariableName { get { return "VAF"; } } public override double Evaluate(double[,] values) { try { return Calculate(values); } catch (ArgumentException) { return double.NegativeInfinity; } } public static double Calculate(double[,] values) { int n = values.GetLength(0); double[] errors = new double[n]; double[] originalTargetVariableValues = new double[n]; for (int i = 0; i < n; i++) { double estimated = values[i, 0]; double original = values[i, 1]; if (!double.IsNaN(estimated) && !double.IsInfinity(estimated) && !double.IsNaN(original) && !double.IsInfinity(original)) { errors[i] = original - estimated; originalTargetVariableValues[i] = original; } else { errors[i] = double.NaN; originalTargetVariableValues[i] = double.NaN; } } double errorsVariance = Statistics.Variance(errors); double originalsVariance = Statistics.Variance(originalTargetVariableValues); if (originalsVariance.IsAlmost(0.0)) if (errorsVariance.IsAlmost(0.0)) { return 1.0; } else { throw new ArgumentException("Variance of original values is zero"); } else { return 1.0 - errorsVariance / originalsVariance; } } } }