#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.DataAnalysis; namespace HeuristicLab.Modeling { public class SimpleTheilInequalityCoefficientEvaluator : SimpleEvaluatorBase { public override string Description { get { return @"Calculates the Theil inequality coefficient (Theil's U2 not U1!) of estimated values vs. real values of 'TargetVariable'. U2 = Sqrt(1/N * Sum(P_t - A_t)^2 ) / Sqrt(1/N * Sum(A_t)^2 ) where P_t is the predicted change of the target variable and A_t is the measured (original) change. (P_t = y'_t - y_(t-1), A_t = y_t - y_(t-1)). U2 is 0 for a perfect prediction and 1 for the naive model y'_t = y_(t-1). An U2 > 1 means the model is worse than the naive model (=> model is useless)."; } } public override string OutputVariableName { get { return "TheilInequalityCoefficient"; } } public override double Evaluate(double[,] values) { return Calculate(values); } public static double Calculate(double[,] values) { int n = values.GetLength(0); double errorsSquaredSum = 0.0; double originalSquaredSum = 0.0; int nSamples = 0; for (int sample = 1; sample < n; sample++) { double prevValue = values[sample - 1, ORIGINAL_INDEX]; double estimatedChange = values[sample, ESTIMATION_INDEX] - prevValue; double originalChange = values[sample, ORIGINAL_INDEX] - prevValue; if (!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) { double error = estimatedChange - originalChange; errorsSquaredSum += error * error; originalSquaredSum += originalChange * originalChange; nSamples++; } } double quality = Math.Sqrt(errorsSquaredSum / nSamples) / Math.Sqrt(originalSquaredSum / nSamples); if (double.IsNaN(quality) || double.IsInfinity(quality)) quality = double.MaxValue; return quality; } } }