#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.Modeling {
public class AnalyzerModel : IAnalyzerModel {
public AnalyzerModel() { } // for persistence
#region IModel Members
private Dataset dataset;
public Dataset Dataset {
get { return dataset; }
set { dataset = value; }
}
private string targetVariable;
public string TargetVariable {
get { return targetVariable; }
set { targetVariable = value; }
}
private List inputVariables = new List();
public IEnumerable InputVariables {
get { return inputVariables; }
}
public int TrainingSamplesStart { get; set; }
public int TrainingSamplesEnd { get; set; }
public int ValidationSamplesStart { get; set; }
public int ValidationSamplesEnd { get; set; }
public int TestSamplesStart { get; set; }
public int TestSamplesEnd { get; set; }
public void AddInputVariable(string variableName) {
if (!inputVariables.Contains(variableName))
inputVariables.Add(variableName);
}
private double trainingMSE;
public double TrainingMeanSquaredError {
get { return trainingMSE; }
set { trainingMSE = value; }
}
private double validationMSE;
public double ValidationMeanSquaredError {
get { return validationMSE; }
set { validationMSE = value; }
}
private double testMSE;
public double TestMeanSquaredError {
get { return testMSE; }
set { testMSE = value; }
}
public double TrainingMeanAbsolutePercentageError {
get;
set;
}
public double ValidationMeanAbsolutePercentageError {
get;
set;
}
public double TestMeanAbsolutePercentageError {
get;
set;
}
public double TrainingMeanAbsolutePercentageOfRangeError {
get;
set;
}
public double ValidationMeanAbsolutePercentageOfRangeError {
get;
set;
}
public double TestMeanAbsolutePercentageOfRangeError {
get;
set;
}
public double TrainingCoefficientOfDetermination {
get;
set;
}
public double ValidationCoefficientOfDetermination {
get;
set;
}
public double TestCoefficientOfDetermination {
get;
set;
}
public double TrainingVarianceAccountedFor {
get;
set;
}
public double ValidationVarianceAccountedFor {
get;
set;
}
public double TestVarianceAccountedFor {
get;
set;
}
public double GetVariableQualityImpact(string variableName) {
if (variableQualityImpacts.ContainsKey(variableName)) return variableQualityImpacts[variableName];
else throw new ArgumentException("Impact of variable " + variableName + " is not available.");
}
public double GetVariableEvaluationImpact(string variableName) {
if (variableEvaluationImpacts.ContainsKey(variableName)) return variableEvaluationImpacts[variableName];
else throw new ArgumentException("Impact of variable " + variableName + " is not available.");
}
public IPredictor Predictor { get; set; }
#endregion
private Dictionary variableQualityImpacts = new Dictionary();
public void SetVariableQualityImpact(string variableName, double impact) {
variableQualityImpacts[variableName] = impact;
}
public void SetVariableQualityImpact(int variableIndex, double impact) {
variableQualityImpacts[dataset.GetVariableName(variableIndex)] = impact;
}
private Dictionary variableEvaluationImpacts = new Dictionary();
public void SetVariableEvaluationImpact(string variableName, double impact) {
variableEvaluationImpacts[variableName] = impact;
}
public void SetVariableEvaluationImpact(int variableIndex, double impact) {
variableEvaluationImpacts[dataset.GetVariableName(variableIndex)] = impact;
}
}
}