#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Operators; using HeuristicLab.Random; using HeuristicLab.Data; using HeuristicLab.Constraints; using System.Diagnostics; namespace HeuristicLab.GP { /// /// Implementation of a homologous uniform crossover operator as described in: /// R. Poli and W. B. Langdon. On the Search Properties of Different Crossover Operators in Genetic Programming. /// In Proceedings of Genetic Programming '98, Madison, Wisconsin, 1998. /// public class UniformCrossover : SizeConstrictedGPCrossoverBase { // internal datastructure to represent crossover points private class CrossoverPoint { public IFunctionTree Parent0; public IFunctionTree Parent1; public int ChildIndex; public bool IsInternal; } public override string Description { get { return @"Uniform crossover as defined by Poli and Langdon"; } } internal override IFunctionTree Cross(TreeGardener gardener, MersenneTwister random, IFunctionTree tree0, IFunctionTree tree1, int maxTreeSize, int maxTreeHeight) { List allowedCrossOverPoints = new List(); GetCrossOverPoints(gardener, tree0, tree1, allowedCrossOverPoints); // iterate through the list of crossover points and swap nodes with p=0.5 foreach (CrossoverPoint crossoverPoint in allowedCrossOverPoints) { if (random.NextDouble() < 0.5) { if (crossoverPoint.IsInternal) { ExchangeNodes(crossoverPoint); } else { SwapSubtrees(crossoverPoint); } } } return tree0; } private void GetCrossOverPoints(TreeGardener gardener, IFunctionTree branch0, IFunctionTree branch1, List crossoverPoints) { if (branch0.SubTrees.Count != branch1.SubTrees.Count) return; // branches have to have same number of sub-trees to be valid crossover points // iterate over all sub-trees for (int i = 0; i < branch0.SubTrees.Count; i++) { IFunctionTree currentSubTree0 = branch0.SubTrees[i]; IFunctionTree currentSubTree1 = branch1.SubTrees[i]; // when the current sub-tree in branch1 can be attached as a child of branch0 // and the sub-tree of branch0 can be attached as child of branch1. // note: we have to check both cases because either branch0 or branch1 can end up in the result tree if (gardener.GetAllowedSubFunctions(branch0.Function, i).Contains(currentSubTree1.Function) && gardener.GetAllowedSubFunctions(branch1.Function, i).Contains(currentSubTree0.Function)) { // and the sub-tree is at the border of the common region if (currentSubTree0.SubTrees.Count != currentSubTree1.SubTrees.Count) { // then we have found a valid crossover point CrossoverPoint p = new CrossoverPoint(); p.ChildIndex = i; p.Parent0 = branch0; p.Parent1 = branch1; p.IsInternal = false; crossoverPoints.Add(p); } else { // when the sub-trees are not on the border of the common region // we also have to check if the children of the current sub-trees of branch0 and branch1 can be exchanged if (CanHaveSubTrees(gardener, currentSubTree0, currentSubTree1.SubTrees) && CanHaveSubTrees(gardener, currentSubTree1, currentSubTree0.SubTrees)) { CrossoverPoint p = new CrossoverPoint(); p.ChildIndex = i; p.Parent0 = branch0; p.Parent1 = branch1; p.IsInternal = true; crossoverPoints.Add(p); } } } GetCrossOverPoints(gardener, currentSubTree0, currentSubTree1, crossoverPoints); } } private bool CanHaveSubTrees(TreeGardener gardener, IFunctionTree parent, IList subTrees) { for (int i = 0; i < subTrees.Count; i++) { if (!gardener.GetAllowedSubFunctions(parent.Function, i).Contains(subTrees[i].Function)) return false; } return true; } private void ExchangeNodes(CrossoverPoint crossoverPoint) { IFunctionTree parent0 = crossoverPoint.Parent0; IFunctionTree parent1 = crossoverPoint.Parent1; int childIndex = crossoverPoint.ChildIndex; IFunctionTree branch0 = crossoverPoint.Parent0.SubTrees[childIndex]; IFunctionTree branch1 = crossoverPoint.Parent1.SubTrees[childIndex]; // exchange the branches in the parent parent0.RemoveSubTree(childIndex); parent0.InsertSubTree(childIndex, branch1); parent1.RemoveSubTree(childIndex); parent1.InsertSubTree(childIndex, branch0); ExchangeChildren(branch0, branch1); } private void SwapSubtrees(CrossoverPoint crossoverPoint) { IFunctionTree parent0 = crossoverPoint.Parent0; IFunctionTree parent1 = crossoverPoint.Parent1; int childIndex = crossoverPoint.ChildIndex; IFunctionTree branch0 = crossoverPoint.Parent0.SubTrees[childIndex]; IFunctionTree branch1 = crossoverPoint.Parent1.SubTrees[childIndex]; // insert branch1 into parent0 replacing branch0 parent0.RemoveSubTree(childIndex); parent0.InsertSubTree(childIndex, branch1); // insert branch0 into parent1 replacing branch1 parent1.RemoveSubTree(childIndex); parent1.InsertSubTree(childIndex, branch0); } private void ExchangeChildren(IFunctionTree branch0, IFunctionTree branch1) { List branch0Children = new List(branch0.SubTrees); // lists to backup subtrees List branch1Children = new List(branch1.SubTrees); // remove children of branch0 and branch1 while (branch1.SubTrees.Count > 0) branch1.RemoveSubTree(0); while (branch0.SubTrees.Count > 0) branch0.RemoveSubTree(0); // add original children of branch0 to branch1 foreach (IFunctionTree subTree in branch0Children) { branch1.AddSubTree(subTree); } // add original children of branch1 to branch0 foreach (IFunctionTree subTree in branch1Children) { branch0.AddSubTree(subTree); } } } }