#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Operators;
using HeuristicLab.Random;
using HeuristicLab.Data;
using HeuristicLab.Constraints;
using System.Diagnostics;
namespace HeuristicLab.GP {
///
/// Implementation of a size fair crossover operator as described in:
/// William B. Langdon
/// Size Fair and Homologous Tree Genetic Programming Crossovers,
/// Genetic Programming and Evolvable Machines, Vol. 1, Number 1/2, pp. 95-119, April 2000
///
public class SizeFairCrossOver : OperatorBase {
private const int MAX_RECOMBINATION_TRIES = 20;
public override string Description {
get {
return @"";
}
}
public SizeFairCrossOver()
: base() {
AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In));
AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In));
AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New));
AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New));
AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New));
}
public override IOperation Apply(IScope scope) {
MersenneTwister random = GetVariableValue("Random", scope, true);
GPOperatorLibrary opLibrary = GetVariableValue("OperatorLibrary", scope, true);
int maxTreeHeight = GetVariableValue("MaxTreeHeight", scope, true).Data;
int maxTreeSize = GetVariableValue("MaxTreeSize", scope, true).Data;
TreeGardener gardener = new TreeGardener(random, opLibrary);
if ((scope.SubScopes.Count % 2) != 0)
throw new InvalidOperationException("Number of parents is not even");
int children = scope.SubScopes.Count / 2;
for (int i = 0; i < children; i++) {
IScope parent1 = scope.SubScopes[0];
scope.RemoveSubScope(parent1);
IScope parent2 = scope.SubScopes[0];
scope.RemoveSubScope(parent2);
IScope child = new Scope(i.ToString());
Cross(gardener, maxTreeSize, maxTreeHeight, scope, random, parent1, parent2, child);
scope.AddSubScope(child);
}
return null;
}
private void Cross(TreeGardener gardener, int maxTreeSize, int maxTreeHeight,
IScope scope, MersenneTwister random, IScope parent1, IScope parent2, IScope child) {
IFunctionTree newTree = Cross(gardener, parent1, parent2,
random, maxTreeSize, maxTreeHeight);
child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), newTree));
child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(newTree.Size)));
child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(newTree.Height)));
// check if the new tree is valid and the height and size are still in the allowed bounds
Debug.Assert(gardener.IsValidTree(newTree) && newTree.Height <= maxTreeHeight && newTree.Size <= maxTreeSize);
}
private IFunctionTree Cross(TreeGardener gardener, IScope f, IScope g, MersenneTwister random, int maxTreeSize, int maxTreeHeight) {
IFunctionTree tree0 = f.GetVariableValue("FunctionTree", false);
int tree0Height = f.GetVariableValue("TreeHeight", false).Data;
int tree0Size = f.GetVariableValue("TreeSize", false).Data;
IFunctionTree tree1 = g.GetVariableValue("FunctionTree", false);
int tree1Height = g.GetVariableValue("TreeHeight", false).Data;
int tree1Size = g.GetVariableValue("TreeSize", false).Data;
// we are going to insert tree1 into tree0 at a random place so we have to make sure that tree0 is not a terminal
// in case both trees are higher than 1 we swap the trees with probability 50%
if (tree0Height == 1 || (tree1Height > 1 && random.Next(2) == 0)) {
IFunctionTree tmp = tree0; tree0 = tree1; tree1 = tmp;
int tmpHeight = tree0Height; tree0Height = tree1Height; tree1Height = tmpHeight;
int tmpSize = tree0Size; tree0Size = tree1Size; tree1Size = tmpSize;
}
// select a random suboperator of the 'receiving' tree
IFunctionTree crossoverPoint = gardener.GetRandomParentNode(tree0);
int removedBranchIndex;
IFunctionTree removedBranch;
IList allowedFunctions;
if (crossoverPoint == null) {
removedBranchIndex = 0;
removedBranch = tree0;
allowedFunctions = gardener.GetAllowedSubFunctions(null, 0);
} else {
removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count);
removedBranch = crossoverPoint.SubTrees[removedBranchIndex];
allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex);
}
int removedBranchSize = removedBranch.Size;
int maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize);
int maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch) + 1;
IFunctionTree insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchSize, maxBranchSize, maxBranchHeight);
int tries = 0;
while (insertedBranch == null) {
if (tries++ > MAX_RECOMBINATION_TRIES) {
if (random.Next() > 0.5) return tree1;
else return tree0;
}
// retry with a different crossoverPoint
crossoverPoint = gardener.GetRandomParentNode(tree0);
if (crossoverPoint == null) {
removedBranchIndex = 0;
removedBranch = tree0;
allowedFunctions = gardener.GetAllowedSubFunctions(null, 0);
} else {
removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count);
removedBranch = crossoverPoint.SubTrees[removedBranchIndex];
allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex);
}
removedBranchSize = removedBranch.Size;
maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize);
maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch) + 1;
insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchSize, maxBranchSize, maxBranchHeight);
}
if (crossoverPoint != null) {
// replace the branch below the crossoverpoint with the selected branch from root1
crossoverPoint.RemoveSubTree(removedBranchIndex);
crossoverPoint.InsertSubTree(removedBranchIndex, insertedBranch);
return tree0;
} else {
return insertedBranch;
}
}
private IFunctionTree GetReplacementBranch(IRandom random, TreeGardener gardener, IList allowedFunctions, IFunctionTree tree, int removedBranchSize, int maxBranchSize, int maxBranchHeight) {
var branches = gardener.GetAllSubTrees(tree).Where(t => allowedFunctions.Contains(t.Function) && t.Size < maxBranchSize && t.Height < maxBranchHeight)
.Select(t => new { Tree = t, Size = t.Size }).Where(s => s.Size < 2 * removedBranchSize + 1);
var shorterBranches = branches.Where(t => t.Size < removedBranchSize);
var longerBranches = branches.Where(t => t.Size > removedBranchSize);
var equalLengthBranches = branches.Where(t => t.Size == removedBranchSize);
if (shorterBranches.Count() == 0 || longerBranches.Count() == 0) {
if (equalLengthBranches.Count() == 0) {
return null;
} else {
return equalLengthBranches.ElementAt(random.Next(equalLengthBranches.Count())).Tree;
}
} else {
// invariant: |shorterBranches| > 0 and |longerBranches| > 0
double pEqualLength = equalLengthBranches.Count() > 0 ? 1.0 / removedBranchSize : 0.0;
double pLonger = (1.0 - pEqualLength) / (longerBranches.Count() * (1.0 + longerBranches.Average(t => t.Size) / shorterBranches.Average(t => t.Size)));
double pShorter = (1.0 - pEqualLength - pLonger);
double r = random.NextDouble();
if (r < pLonger) {
return longerBranches.ElementAt(random.Next(longerBranches.Count())).Tree;
} else if (r < pLonger + pShorter) {
return shorterBranches.ElementAt(random.Next(shorterBranches.Count())).Tree;
} else {
return equalLengthBranches.ElementAt(random.Next(equalLengthBranches.Count())).Tree;
}
}
}
}
}