#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Operators; using HeuristicLab.Random; using HeuristicLab.Data; using HeuristicLab.Constraints; using System.Diagnostics; namespace HeuristicLab.GP { /// /// Implementation of a size fair crossover operator as described in: /// William B. Langdon /// Size Fair and Homologous Tree Genetic Programming Crossovers, /// Genetic Programming and Evolvable Machines, Vol. 1, Number 1/2, pp. 95-119, April 2000 /// public class SizeFairCrossOver : OperatorBase { private const int MAX_RECOMBINATION_TRIES = 20; public override string Description { get { return @""; } } public SizeFairCrossOver() : base() { AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In)); AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New)); AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New)); AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New)); } public override IOperation Apply(IScope scope) { MersenneTwister random = GetVariableValue("Random", scope, true); GPOperatorLibrary opLibrary = GetVariableValue("OperatorLibrary", scope, true); int maxTreeHeight = GetVariableValue("MaxTreeHeight", scope, true).Data; int maxTreeSize = GetVariableValue("MaxTreeSize", scope, true).Data; TreeGardener gardener = new TreeGardener(random, opLibrary); if ((scope.SubScopes.Count % 2) != 0) throw new InvalidOperationException("Number of parents is not even"); int children = scope.SubScopes.Count / 2; for (int i = 0; i < children; i++) { IScope parent1 = scope.SubScopes[0]; scope.RemoveSubScope(parent1); IScope parent2 = scope.SubScopes[0]; scope.RemoveSubScope(parent2); IScope child = new Scope(i.ToString()); Cross(gardener, maxTreeSize, maxTreeHeight, scope, random, parent1, parent2, child); scope.AddSubScope(child); } return null; } private void Cross(TreeGardener gardener, int maxTreeSize, int maxTreeHeight, IScope scope, MersenneTwister random, IScope parent1, IScope parent2, IScope child) { IFunctionTree newTree = Cross(gardener, parent1, parent2, random, maxTreeSize, maxTreeHeight); child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), newTree)); child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(newTree.Size))); child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(newTree.Height))); // check if the new tree is valid and the height and size are still in the allowed bounds Debug.Assert(gardener.IsValidTree(newTree) && newTree.Height <= maxTreeHeight && newTree.Size <= maxTreeSize); } private IFunctionTree Cross(TreeGardener gardener, IScope f, IScope g, MersenneTwister random, int maxTreeSize, int maxTreeHeight) { IFunctionTree tree0 = f.GetVariableValue("FunctionTree", false); int tree0Height = f.GetVariableValue("TreeHeight", false).Data; int tree0Size = f.GetVariableValue("TreeSize", false).Data; IFunctionTree tree1 = g.GetVariableValue("FunctionTree", false); int tree1Height = g.GetVariableValue("TreeHeight", false).Data; int tree1Size = g.GetVariableValue("TreeSize", false).Data; // we are going to insert tree1 into tree0 at a random place so we have to make sure that tree0 is not a terminal // in case both trees are higher than 1 we swap the trees with probability 50% if (tree0Height == 1 || (tree1Height > 1 && random.Next(2) == 0)) { IFunctionTree tmp = tree0; tree0 = tree1; tree1 = tmp; int tmpHeight = tree0Height; tree0Height = tree1Height; tree1Height = tmpHeight; int tmpSize = tree0Size; tree0Size = tree1Size; tree1Size = tmpSize; } // select a random suboperator of the 'receiving' tree IFunctionTree crossoverPoint = gardener.GetRandomParentNode(tree0); int removedBranchIndex; IFunctionTree removedBranch; IList allowedFunctions; if (crossoverPoint == null) { removedBranchIndex = 0; removedBranch = tree0; allowedFunctions = gardener.GetAllowedSubFunctions(null, 0); } else { removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count); removedBranch = crossoverPoint.SubTrees[removedBranchIndex]; allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex); } int removedBranchSize = removedBranch.Size; int maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize); int maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch) + 1; IFunctionTree insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchSize, maxBranchSize, maxBranchHeight); int tries = 0; while (insertedBranch == null) { if (tries++ > MAX_RECOMBINATION_TRIES) { if (random.Next() > 0.5) return tree1; else return tree0; } // retry with a different crossoverPoint crossoverPoint = gardener.GetRandomParentNode(tree0); if (crossoverPoint == null) { removedBranchIndex = 0; removedBranch = tree0; allowedFunctions = gardener.GetAllowedSubFunctions(null, 0); } else { removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count); removedBranch = crossoverPoint.SubTrees[removedBranchIndex]; allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex); } removedBranchSize = removedBranch.Size; maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize); maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch) + 1; insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchSize, maxBranchSize, maxBranchHeight); } if (crossoverPoint != null) { // replace the branch below the crossoverpoint with the selected branch from root1 crossoverPoint.RemoveSubTree(removedBranchIndex); crossoverPoint.InsertSubTree(removedBranchIndex, insertedBranch); return tree0; } else { return insertedBranch; } } private IFunctionTree GetReplacementBranch(IRandom random, TreeGardener gardener, IList allowedFunctions, IFunctionTree tree, int removedBranchSize, int maxBranchSize, int maxBranchHeight) { var branches = gardener.GetAllSubTrees(tree).Where(t => allowedFunctions.Contains(t.Function) && t.Size < maxBranchSize && t.Height < maxBranchHeight) .Select(t => new { Tree = t, Size = t.Size }).Where(s => s.Size < 2 * removedBranchSize + 1); var shorterBranches = branches.Where(t => t.Size < removedBranchSize); var longerBranches = branches.Where(t => t.Size > removedBranchSize); var equalLengthBranches = branches.Where(t => t.Size == removedBranchSize); if (shorterBranches.Count() == 0 || longerBranches.Count() == 0) { if (equalLengthBranches.Count() == 0) { return null; } else { return equalLengthBranches.ElementAt(random.Next(equalLengthBranches.Count())).Tree; } } else { // invariant: |shorterBranches| > 0 and |longerBranches| > 0 double pEqualLength = equalLengthBranches.Count() > 0 ? 1.0 / removedBranchSize : 0.0; double pLonger = (1.0 - pEqualLength) / (longerBranches.Count() * (1.0 + longerBranches.Average(t => t.Size) / shorterBranches.Average(t => t.Size))); double pShorter = (1.0 - pEqualLength - pLonger); double r = random.NextDouble(); if (r < pLonger) { return longerBranches.ElementAt(random.Next(longerBranches.Count())).Tree; } else if (r < pLonger + pShorter) { return shorterBranches.ElementAt(random.Next(shorterBranches.Count())).Tree; } else { return equalLengthBranches.ElementAt(random.Next(equalLengthBranches.Count())).Tree; } } } } }