#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Operators; using HeuristicLab.Random; using HeuristicLab.Data; using HeuristicLab.Constraints; using System.Diagnostics; namespace HeuristicLab.GP { public abstract class GPCrossoverBase : OperatorBase { public GPCrossoverBase() : base() { AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In)); AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In)); AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New)); AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New)); AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New)); } public override IOperation Apply(IScope scope) { MersenneTwister random = GetVariableValue("Random", scope, true); GPOperatorLibrary opLibrary = GetVariableValue("OperatorLibrary", scope, true); TreeGardener gardener = new TreeGardener(random, opLibrary); if ((scope.SubScopes.Count % 2) != 0) throw new InvalidOperationException("Number of parents is not even"); int children = scope.SubScopes.Count / 2; for (int i = 0; i < children; i++) { IFunctionTree parent0 = TakeNextParent(scope); IFunctionTree parent1 = TakeNextParent(scope); // randomly swap parents to remove a possible bias from selection (e.g. when using gender-specific selection) if (random.NextDouble() < 0.5) { IFunctionTree tmp = parent0; parent0 = parent1; parent1 = tmp; } IFunctionTree child = Cross(scope, gardener, random, parent0, parent1); Debug.Assert(gardener.IsValidTree(child)); IScope childScope = new Scope(i.ToString()); childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), child)); childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(child.Size))); childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(child.Height))); scope.AddSubScope(childScope); } return null; } internal abstract IFunctionTree Cross(IScope scope, TreeGardener gardener, MersenneTwister random, IFunctionTree tree0, IFunctionTree tree1); private IFunctionTree TakeNextParent(IScope scope) { IFunctionTree parent = GetVariableValue("FunctionTree", scope.SubScopes[0], false); scope.RemoveSubScope(scope.SubScopes[0]); return parent; } } }