#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Core;
using System.Linq;
using System.Collections;
using HeuristicLab.GP.Interfaces;
namespace HeuristicLab.GP {
public class TreeGardener {
private IRandom random;
private FunctionLibrary funLibrary;
private List functions;
private List terminals;
public IList Terminals {
get { return terminals; }
}
private List allFunctions;
public IList AllFunctions {
get { return allFunctions; }
}
#region constructors
public TreeGardener(IRandom random, FunctionLibrary funLibrary) {
this.random = random;
this.funLibrary = funLibrary;
this.allFunctions = new List();
terminals = new List();
functions = new List();
// init functions and terminals based on constraints
foreach (IFunction fun in funLibrary.Functions) {
if (fun.MaxSubTrees == 0) {
terminals.Add(fun);
allFunctions.Add(fun);
} else {
functions.Add(fun);
allFunctions.Add(fun);
}
}
}
#endregion
#region random initialization
///
/// Creates a random balanced tree with a maximal size and height. When the max-height or max-size are 1 it will return a random terminal.
/// In other cases it will return either a terminal (tree of size 1) or any other tree with a function in it's root (at least height 2).
///
/// Maximal size of the tree (number of nodes).
/// Maximal height of the tree.
///
public IFunctionTree CreateBalancedRandomTree(int maxTreeSize, int maxTreeHeight) {
IFunction rootFunction = GetRandomRoot(maxTreeSize, maxTreeHeight);
IFunctionTree tree = MakeBalancedTree(rootFunction, maxTreeHeight - 1);
return tree;
}
///
/// Creates a random (unbalanced) tree with a maximal size and height. When the max-height or max-size are 1 it will return a random terminal.
/// In other cases it will return either a terminal (tree of size 1) or any other tree with a function in it's root (at least height 2).
///
/// Maximal size of the tree (number of nodes).
/// Maximal height of the tree.
///
public IFunctionTree CreateUnbalancedRandomTree(int maxTreeSize, int maxTreeHeight) {
IFunction rootFunction = GetRandomRoot(maxTreeSize, maxTreeHeight);
IFunctionTree tree = MakeUnbalancedTree(rootFunction, maxTreeHeight - 1);
return tree;
}
public IFunctionTree PTC2(int size, int maxDepth) {
return PTC2(GetRandomRoot(size, maxDepth), size, maxDepth);
}
private IFunctionTree PTC2(IFunction rootFunction, int size, int maxDepth) {
IFunctionTree root = rootFunction.GetTreeNode();
if (size <= 1 || maxDepth <= 1) return root;
List list = new List();
int currentSize = 1;
int totalListMinSize = 0;
int minArity = root.Function.MinSubTrees;
int maxArity = root.Function.MaxSubTrees;
if (maxArity >= size) {
maxArity = size;
}
int actualArity = random.Next(minArity, maxArity + 1);
totalListMinSize += root.Function.MinTreeSize - 1;
for (int i = 0; i < actualArity; i++) {
// insert a dummy sub-tree and add the pending extension to the list
root.AddSubTree(null);
list.Add(new object[] { root, i, 2 });
}
if (IsRecursiveExpansionPossible(root.Function)) {
while (list.Count > 0 && totalListMinSize + currentSize < size) {
int randomIndex = random.Next(list.Count);
object[] nextExtension = list[randomIndex];
list.RemoveAt(randomIndex);
IFunctionTree parent = (IFunctionTree)nextExtension[0];
int a = (int)nextExtension[1];
int d = (int)nextExtension[2];
if (d + parent.Function.MinTreeHeight >= maxDepth) {
parent.RemoveSubTree(a);
IFunctionTree branch = CreateRandomTree(GetAllowedSubFunctions(parent.Function, a), 1, 1);
parent.InsertSubTree(a, branch); // insert a smallest possible tree
currentSize += branch.GetSize();
totalListMinSize -= branch.GetSize();
} else {
var allowedSubFunctions = from f in GetAllowedSubFunctions(parent.Function, a)
where f.MinTreeHeight + (d - 1) < maxDepth
where IsRecursiveExpansionPossible(f) ||
totalListMinSize + currentSize >= size * 0.9 // if the necessary size is almost reached then also allow
// terminals or terminal-branches
select f;
IFunction selectedFunction = TreeGardener.RandomSelect(random, allowedSubFunctions.ToList());
IFunctionTree newTree = selectedFunction.GetTreeNode();
parent.RemoveSubTree(a);
parent.InsertSubTree(a, newTree);
currentSize++;
totalListMinSize--;
minArity = selectedFunction.MinSubTrees;
maxArity = selectedFunction.MaxSubTrees;
if (maxArity >= size) {
maxArity = size;
}
actualArity = random.Next(minArity, maxArity + 1);
for (int i = 0; i < actualArity; i++) {
// insert a dummy sub-tree and add the pending extension to the list
newTree.AddSubTree(null);
list.Add(new object[] { newTree, i, d + 1 });
}
totalListMinSize += newTree.Function.MinTreeSize;
}
}
}
while (list.Count > 0) {
int randomIndex = random.Next(list.Count);
object[] nextExtension = list[randomIndex];
list.RemoveAt(randomIndex);
IFunctionTree parent = (IFunctionTree)nextExtension[0];
int a = (int)nextExtension[1];
int d = (int)nextExtension[2];
parent.RemoveSubTree(a);
parent.InsertSubTree(a,
CreateRandomTree(GetAllowedSubFunctions(parent.Function, a), 1, 1)); // append a tree with minimal possible height
}
return root;
}
private bool IsRecursiveExpansionPossible(IFunction function) {
return FindCycle(function, new Stack());
}
private Dictionary inCycle = new Dictionary();
private bool FindCycle(IFunction function, Stack functionChain) {
if (inCycle.ContainsKey(function)) {
return inCycle[function];
} else if (IsTerminal(function)) {
inCycle[function] = false;
return false;
} else if (functionChain.Contains(function)) {
inCycle[function] = true;
return true;
} else {
functionChain.Push(function);
bool result = false;
// all slot indexes
for (int i = 0; i < function.MaxSubTrees; i++) {
foreach (IFunction subFunction in GetAllowedSubFunctions(function, i)) {
result |= FindCycle(subFunction, functionChain);
}
}
functionChain.Pop();
inCycle[function] = result;
return result;
}
}
///
/// selects a random function from allowedFunctions and creates a random (unbalanced) tree with maximal size and height.
///
/// Set of allowed functions.
/// Maximal size of the tree (number of nodes).
/// Maximal height of the tree.
/// New random unbalanced tree
public IFunctionTree CreateRandomTree(ICollection allowedFunctions, int maxTreeSize, int maxTreeHeight) {
// get the minimal needed height based on allowed functions and extend the max-height if necessary
int minTreeHeight = allowedFunctions.Select(f => f.MinTreeHeight).Min();
if (minTreeHeight > maxTreeHeight)
maxTreeHeight = minTreeHeight;
// get the minimal needed size based on allowed functions and extend the max-size if necessary
int minTreeSize = allowedFunctions.Select(f => f.MinTreeSize).Min();
if (minTreeSize > maxTreeSize)
maxTreeSize = minTreeSize;
// select a random value for the size and height
int treeHeight = random.Next(minTreeHeight, maxTreeHeight + 1);
int treeSize = random.Next(minTreeSize, maxTreeSize + 1);
// filter the set of allowed functions and select only from those that fit into the given maximal size and height limits
IFunction[] possibleFunctions = allowedFunctions.Where(f => f.MinTreeHeight <= treeHeight &&
f.MinTreeSize <= treeSize).ToArray();
IFunction selectedFunction = RandomSelect(possibleFunctions);
// build the tree
IFunctionTree root;
root = PTC2(selectedFunction, maxTreeSize, maxTreeHeight);
return root;
}
#endregion
#region tree information gathering
public IFunctionTree GetRandomParentNode(IFunctionTree tree) {
List parentNodes = new List();
// add null for the parent of the root node
parentNodes.Add(null);
TreeForEach(tree, delegate(IFunctionTree possibleParentNode) {
if (possibleParentNode.SubTrees.Count > 0) {
parentNodes.Add(possibleParentNode);
}
});
return parentNodes[random.Next(parentNodes.Count)];
}
public static ICollection GetAllSubTrees(IFunctionTree root) {
List allTrees = new List();
TreeForEach(root, t => { allTrees.Add(t); });
return allTrees;
}
///
/// returns the height level of branch in the tree
/// if the branch == tree => 1
/// if branch is in the sub-trees of tree => 2
/// ...
/// if branch is not found => -1
///
/// root of the function tree to process
/// branch that is searched in the tree
///
public int GetBranchLevel(IFunctionTree tree, IFunctionTree branch) {
return GetBranchLevelHelper(tree, branch, 1);
}
// 'tail-recursive' helper
private int GetBranchLevelHelper(IFunctionTree tree, IFunctionTree branch, int level) {
if (branch == tree) return level;
foreach (IFunctionTree subTree in tree.SubTrees) {
int result = GetBranchLevelHelper(subTree, branch, level + 1);
if (result != -1) return result;
}
return -1;
}
public bool IsValidTree(IFunctionTree tree) {
for (int i = 0; i < tree.SubTrees.Count; i++) {
if (!tree.Function.GetAllowedSubFunctions(i).Contains(tree.SubTrees[i].Function)) return false;
}
if (tree.SubTrees.Count < tree.Function.MinSubTrees || tree.SubTrees.Count > tree.Function.MaxSubTrees)
return false;
foreach (IFunctionTree subTree in tree.SubTrees) {
if (!IsValidTree(subTree)) return false;
}
return true;
}
// returns a random branch from the specified level in the tree
public IFunctionTree GetRandomBranch(IFunctionTree tree, int level) {
if (level == 0) return tree;
List branches = new List();
GetBranchesAtLevel(tree, level, branches);
return branches[random.Next(branches.Count)];
}
#endregion
#region function information (arity, allowed childs and parents)
internal ICollection GetPossibleParents(List list) {
List result = new List();
foreach (IFunction f in functions) {
if (IsPossibleParent(f, list)) {
result.Add(f);
}
}
return result;
}
private bool IsPossibleParent(IFunction f, List children) {
int minArity = f.MinSubTrees;
int maxArity = f.MaxSubTrees;
// note: we can't assume that the operators in the children list have different types!
// when the maxArity of this function is smaller than the list of operators that
// should be included as sub-operators then it can't be a parent
if (maxArity < children.Count()) {
return false;
}
int nSlots = Math.Max(minArity, children.Count);
List> slotSets = new List>();
// we iterate through all slots for sub-trees and calculate the set of
// allowed functions for this slot.
// we only count those slots that can hold at least one of the children that we should combine
for (int slot = 0; slot < nSlots; slot++) {
HashSet functionSet = new HashSet(f.GetAllowedSubFunctions(slot));
if (functionSet.Count() > 0) {
slotSets.Add(functionSet);
}
}
// ok at the end of this operation we know how many slots of the parent can actually
// hold one of our children.
// if the number of slots is smaller than the number of children we can be sure that
// we can never combine all children as sub-trees of the function and thus the function
// can't be a parent.
if (slotSets.Count() < children.Count()) {
return false;
}
// finally we sort the sets by size and beginning from the first set select one
// function for the slot and thus remove it as possible sub-tree from the remaining sets.
// when we can successfully assign all available children to a slot the function is a valid parent
// when only a subset of all children can be assigned to slots the function is no valid parent
slotSets.Sort((p, q) => p.Count() - q.Count());
int assignments = 0;
for (int i = 0; i < slotSets.Count() - 1; i++) {
if (slotSets[i].Count > 0) {
IFunction selected = slotSets[i].ElementAt(0);
assignments++;
for (int j = i + 1; j < slotSets.Count(); j++) {
slotSets[j].Remove(selected);
}
}
}
// sanity check
if (assignments > children.Count) throw new InvalidProgramException();
return assignments == children.Count - 1;
}
public IList GetAllowedParents(IFunction child, int childIndex) {
List parents = new List();
foreach (IFunction function in functions) {
ICollection allowedSubFunctions = GetAllowedSubFunctions(function, childIndex);
if (allowedSubFunctions.Contains(child)) {
parents.Add(function);
}
}
return parents;
}
public static bool IsTerminal(IFunction f) {
return f.MinSubTrees == 0 && f.MaxSubTrees == 0;
}
public ICollection GetAllowedSubFunctions(IFunction f, int index) {
if (f == null) {
return allFunctions;
} else {
return f.GetAllowedSubFunctions(index);
}
}
#endregion
#region private utility methods
public IFunction GetRandomRoot(int maxTreeSize, int maxTreeHeight) {
if (maxTreeHeight == 1 || maxTreeSize == 1) {
IFunction selectedTerminal = RandomSelect(terminals);
return selectedTerminal;
} else {
int minExpandableTreeSize = (from f in functions
where IsRecursiveExpansionPossible(f)
select f.MinTreeSize).Min();
int minExpandableTreeHeight = (from f in functions
where IsRecursiveExpansionPossible(f)
select f.MinTreeHeight).Min();
IFunction[] possibleFunctions;
if (maxTreeSize < minExpandableTreeSize || maxTreeHeight < minExpandableTreeHeight) {
possibleFunctions = functions.Where(f => f.MinTreeHeight <= maxTreeHeight &&
f.MinTreeSize <= maxTreeSize).ToArray();
} else {
possibleFunctions = functions.Where(f => f.MinTreeHeight <= maxTreeHeight &&
f.MinTreeSize <= maxTreeSize && IsRecursiveExpansionPossible(f)).ToArray();
}
return RandomSelect(possibleFunctions);
}
}
private IFunctionTree MakeUnbalancedTree(IFunction parent, int maxTreeHeight) {
if (maxTreeHeight == 0) return parent.GetTreeNode();
int minArity = parent.MinSubTrees;
int maxArity = parent.MaxSubTrees;
int actualArity = random.Next(minArity, maxArity + 1);
if (actualArity > 0) {
IFunctionTree parentTree = parent.GetTreeNode();
for (int i = 0; i < actualArity; i++) {
IFunction[] possibleFunctions = GetAllowedSubFunctions(parent, i).Where(f => f.MinTreeHeight <= maxTreeHeight).ToArray();
IFunction selectedFunction = RandomSelect(possibleFunctions);
IFunctionTree newSubTree = MakeUnbalancedTree(selectedFunction, maxTreeHeight - 1);
parentTree.InsertSubTree(i, newSubTree);
}
return parentTree;
}
return parent.GetTreeNode();
}
// NOTE: this method doesn't build fully balanced trees because we have constraints on the
// types of possible sub-functions which can indirectly impose a limit for the depth of a given sub-tree
private IFunctionTree MakeBalancedTree(IFunction parent, int maxTreeHeight) {
if (maxTreeHeight == 0) return parent.GetTreeNode();
int minArity = parent.MinSubTrees;
int maxArity = parent.MaxSubTrees;
int actualArity = random.Next(minArity, maxArity + 1);
if (actualArity > 0) {
IFunctionTree parentTree = parent.GetTreeNode();
for (int i = 0; i < actualArity; i++) {
// first try to find a function that fits into the maxHeight limit
IFunction[] possibleFunctions = GetAllowedSubFunctions(parent, i).Where(f => f.MinTreeHeight <= maxTreeHeight &&
!IsTerminal(f)).ToArray();
// no possible function found => extend function set to terminals
if (possibleFunctions.Length == 0) {
possibleFunctions = GetAllowedSubFunctions(parent, i).Where(f => IsTerminal(f)).ToArray();
IFunction selectedTerminal = RandomSelect(possibleFunctions);
IFunctionTree newTree = selectedTerminal.GetTreeNode();
parentTree.InsertSubTree(i, newTree);
} else {
IFunction selectedFunction = RandomSelect(possibleFunctions);
IFunctionTree newTree = MakeBalancedTree(selectedFunction, maxTreeHeight - 1);
parentTree.InsertSubTree(i, newTree);
}
}
return parentTree;
}
return parent.GetTreeNode();
}
private static void TreeForEach(IFunctionTree tree, Action action) {
action(tree);
foreach (IFunctionTree subTree in tree.SubTrees) {
TreeForEach(subTree, action);
}
}
private static void GetBranchesAtLevel(IFunctionTree tree, int level, List result) {
if (level == 1) result.AddRange(tree.SubTrees);
foreach (IFunctionTree subTree in tree.SubTrees) {
if (subTree.GetHeight() >= level - 1)
GetBranchesAtLevel(subTree, level - 1, result);
}
}
private IFunction RandomSelect(IList functionSet) {
return RandomSelect(random, functionSet);
}
public static IFunction RandomSelect(IRandom random, IList functionSet) {
if (random == null || functionSet == null) throw new ArgumentNullException();
if (functionSet.Count == 0) throw new ArgumentException("Empty function set");
if (functionSet.Select(x => x.Tickets).Sum() <= 0) throw new ArgumentException("All functions in set have 0 tickets");
double[] accumulatedTickets = new double[functionSet.Count];
double ticketAccumulator = 0;
int i = 0;
// precalculate the slot-sizes
foreach (IFunction function in functionSet) {
ticketAccumulator += function.Tickets;
accumulatedTickets[i] = ticketAccumulator;
i++;
}
// throw ball
double r = random.NextDouble() * ticketAccumulator;
// find the slot that has been hit
for (i = 0; i < accumulatedTickets.Length; i++) {
if (r < accumulatedTickets[i]) return functionSet[i];
}
throw new ArgumentException();
}
#endregion
}
}