#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.GP.Interfaces; using HeuristicLab.Operators; using HeuristicLab.Random; namespace HeuristicLab.GP.StructureIdentification { public class Variable : Terminal { public const string WEIGHT = "Weight"; public const string OFFSET = "SampleOffset"; public const string VARIABLENAME = "Variable"; private int minOffset; private int maxOffset; public override string Description { get { return @"Variable reads a value from a dataset, multiplies that value with a given factor and returns the result. The variable 'SampleOffset' can be used to read a value from previous or following rows. The index of the row that is actually read is SampleIndex+SampleOffset)."; } } public override IFunctionTree GetTreeNode() { return new VariableFunctionTree(this); } public Variable() : base() { SetupInitialization(); SetupManipulation(); } private void SetupInitialization() { CombinedOperator combinedOp = new CombinedOperator(); SequentialProcessor seq = new SequentialProcessor(); UniformItemChooser variableRandomizer = new UniformItemChooser(); variableRandomizer.GetVariableInfo("Value").ActualName = VARIABLENAME; variableRandomizer.GetVariableInfo("Values").ActualName = "InputVariables"; variableRandomizer.Name = "Variable randomizer"; NormalRandomizer weightRandomizer = new NormalRandomizer(); weightRandomizer.Mu = 0.0; weightRandomizer.Sigma = 1.0; weightRandomizer.GetVariableInfo("Value").ActualName = WEIGHT; weightRandomizer.Name = "Weight Randomizer"; UniformRandomizer offsetRandomizer = new UniformRandomizer(); offsetRandomizer.Min = minOffset; offsetRandomizer.Max = maxOffset + 1; offsetRandomizer.GetVariableInfo("Value").ActualName = OFFSET; offsetRandomizer.Name = "Offset Randomizer"; combinedOp.OperatorGraph.AddOperator(seq); combinedOp.OperatorGraph.AddOperator(variableRandomizer); combinedOp.OperatorGraph.AddOperator(weightRandomizer); combinedOp.OperatorGraph.AddOperator(offsetRandomizer); combinedOp.OperatorGraph.InitialOperator = seq; seq.AddSubOperator(variableRandomizer); seq.AddSubOperator(weightRandomizer); seq.AddSubOperator(offsetRandomizer); Initializer = combinedOp; } private void SetupManipulation() { // manipulation operator CombinedOperator combinedOp = new CombinedOperator(); SequentialProcessor seq = new SequentialProcessor(); UniformItemChooser variableRandomizer = new UniformItemChooser(); variableRandomizer.GetVariableInfo("Value").ActualName = VARIABLENAME; variableRandomizer.GetVariableInfo("Values").ActualName = "InputVariables"; variableRandomizer.Name = "Variable randomizer"; NormalRandomAdder weightRandomAdder = new NormalRandomAdder(); weightRandomAdder.Mu = 0.0; weightRandomAdder.Sigma = 1.0; weightRandomAdder.GetVariableInfo("Value").ActualName = WEIGHT; weightRandomAdder.Name = "Weight Adder"; NormalRandomAdder offsetRandomAdder = new NormalRandomAdder(); offsetRandomAdder.Mu = 0.0; offsetRandomAdder.Sigma = 1.0; offsetRandomAdder.GetVariableInfo("Value").ActualName = OFFSET; offsetRandomAdder.Name = "Offset Adder"; combinedOp.OperatorGraph.AddOperator(seq); combinedOp.OperatorGraph.AddOperator(variableRandomizer); combinedOp.OperatorGraph.AddOperator(weightRandomAdder); combinedOp.OperatorGraph.AddOperator(offsetRandomAdder); combinedOp.OperatorGraph.InitialOperator = seq; seq.AddSubOperator(variableRandomizer); seq.AddSubOperator(weightRandomAdder); seq.AddSubOperator(offsetRandomAdder); Manipulator = combinedOp; } public void SetConstraints(int minSampleOffset, int maxSampleOffset) { this.minOffset = minSampleOffset; this.maxOffset = maxSampleOffset; SetupInitialization(); SetupManipulation(); } } }