#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using System.Xml;
using System.Diagnostics;
using HeuristicLab.DataAnalysis;
using HeuristicLab.Operators;
using HeuristicLab.Random;
using HeuristicLab.Selection;
using HeuristicLab.Logging;
using HeuristicLab.Data;
using HeuristicLab.Operators.Programmable;
using HeuristicLab.Modeling;
namespace HeuristicLab.GP.StructureIdentification {
public class StandardGP : AlgorithmBase, IEditable {
public override string Name { get { return "StandardGP"; } }
public override int TargetVariable {
get { return ProblemInjector.GetVariableValue("TargetVariable", null, false).Data; }
set { ProblemInjector.GetVariableValue("TargetVariable", null, false).Data = value; }
}
public override Dataset Dataset {
get { return ProblemInjector.GetVariableValue("Dataset", null, false); }
set { ProblemInjector.GetVariable("Dataset").Value = value; }
}
public virtual int MaxGenerations {
get { return GetVariableInjector().GetVariable("MaxGenerations").GetValue().Data; }
set { GetVariableInjector().GetVariable("MaxGenerations").GetValue().Data = value; }
}
public virtual int TournamentSize {
get { return GetVariableInjector().GetVariable("TournamentSize").GetValue().Data; }
set { GetVariableInjector().GetVariable("TournamentSize").GetValue().Data = value; }
}
public double FullTreeShakingFactor {
get { return GetVariableInjector().GetVariable("FullTreeShakingFactor").GetValue().Data; }
set { GetVariableInjector().GetVariable("FullTreeShakingFactor").GetValue().Data = value; }
}
public double OnePointShakingFactor {
get { return GetVariableInjector().GetVariable("OnePointShakingFactor").GetValue().Data; }
set { GetVariableInjector().GetVariable("OnePointShakingFactor").GetValue().Data = value; }
}
public int MinInitialTreeSize {
get { return GetVariableInjector().GetVariable("MinInitialTreeSize").GetValue().Data; }
set { GetVariableInjector().GetVariable("MinInitialTreeSize").GetValue().Data = value; }
}
public override int MaxTreeSize {
get {
return base.MaxTreeSize;
}
set {
base.MaxTreeSize = value;
MinInitialTreeSize = value / 2;
}
}
public override int PopulationSize {
get {
return base.PopulationSize;
}
set {
base.PopulationSize = value;
Parents = 2 * value;
}
}
public StandardGP()
: base() {
PopulationSize = 10000;
MaxGenerations = 100;
TournamentSize = 7;
MutationRate = 0.15;
Elites = 1;
MaxTreeSize = 100;
MaxTreeHeight = 10;
FullTreeShakingFactor = 0.1;
OnePointShakingFactor = 1.0;
PunishmentFactor = 10.0;
UseEstimatedTargetValue = false;
SetSeedRandomly = true;
}
protected internal override IOperator CreateProblemInjector() {
return new ProblemInjector();
}
protected internal override IOperator CreateSelector() {
TournamentSelector selector = new TournamentSelector();
selector.Name = "Selector";
selector.GetVariableInfo("Selected").ActualName = "Parents";
selector.GetVariableInfo("GroupSize").Local = false;
selector.RemoveVariable("GroupSize");
selector.GetVariableInfo("GroupSize").ActualName = "TournamentSize";
return selector;
}
protected internal override IOperator CreateGlobalInjector() {
VariableInjector globalInjector = (VariableInjector)base.CreateGlobalInjector();
globalInjector.AddVariable(new HeuristicLab.Core.Variable("TournamentSize", new IntData()));
globalInjector.AddVariable(new HeuristicLab.Core.Variable("MaxGenerations", new IntData()));
globalInjector.AddVariable(new HeuristicLab.Core.Variable("FullTreeShakingFactor", new DoubleData()));
globalInjector.AddVariable(new HeuristicLab.Core.Variable("OnePointShakingFactor", new DoubleData()));
globalInjector.AddVariable(new HeuristicLab.Core.Variable("MinInitialTreeSize", new IntData()));
return globalInjector;
}
protected internal override IOperator CreateCrossover() {
StandardCrossOver crossover = new StandardCrossOver();
crossover.Name = "Crossover";
crossover.GetVariableInfo("OperatorLibrary").ActualName = "FunctionLibrary";
return crossover;
}
protected internal override IOperator CreateTreeCreator() {
ProbabilisticTreeCreator treeCreator = new ProbabilisticTreeCreator();
treeCreator.Name = "Tree generator";
treeCreator.GetVariableInfo("OperatorLibrary").ActualName = "FunctionLibrary";
treeCreator.GetVariableInfo("MinTreeSize").ActualName = "MinInitialTreeSize";
return treeCreator;
}
protected internal override IOperator CreateFunctionLibraryInjector() {
FunctionLibraryInjector funLibInjector = new FunctionLibraryInjector();
funLibInjector.GetVariableValue("Xor", null, false).Data = false;
funLibInjector.GetVariableValue("Average", null, false).Data = false;
return funLibInjector;
}
protected internal override IOperator CreateManipulator() {
CombinedOperator manipulator = new CombinedOperator();
manipulator.Name = "Manipulator";
StochasticMultiBranch multibranch = new StochasticMultiBranch();
FullTreeShaker fullTreeShaker = new FullTreeShaker();
fullTreeShaker.GetVariableInfo("OperatorLibrary").ActualName = "FunctionLibrary";
fullTreeShaker.GetVariableInfo("ShakingFactor").ActualName = "FullTreeShakingFactor";
OnePointShaker onepointShaker = new OnePointShaker();
onepointShaker.GetVariableInfo("OperatorLibrary").ActualName = "FunctionLibrary";
onepointShaker.GetVariableInfo("ShakingFactor").ActualName = "OnePointShakingFactor";
ChangeNodeTypeManipulation changeNodeTypeManipulation = new ChangeNodeTypeManipulation();
changeNodeTypeManipulation.GetVariableInfo("OperatorLibrary").ActualName = "FunctionLibrary";
CutOutNodeManipulation cutOutNodeManipulation = new CutOutNodeManipulation();
cutOutNodeManipulation.GetVariableInfo("OperatorLibrary").ActualName = "FunctionLibrary";
DeleteSubTreeManipulation deleteSubTreeManipulation = new DeleteSubTreeManipulation();
deleteSubTreeManipulation.GetVariableInfo("OperatorLibrary").ActualName = "FunctionLibrary";
SubstituteSubTreeManipulation substituteSubTreeManipulation = new SubstituteSubTreeManipulation();
substituteSubTreeManipulation.GetVariableInfo("OperatorLibrary").ActualName = "FunctionLibrary";
IOperator[] manipulators = new IOperator[] {
onepointShaker, fullTreeShaker,
changeNodeTypeManipulation,
cutOutNodeManipulation,
deleteSubTreeManipulation,
substituteSubTreeManipulation};
DoubleArrayData probabilities = new DoubleArrayData(new double[manipulators.Length]);
for (int i = 0; i < manipulators.Length; i++) {
probabilities.Data[i] = 1.0;
multibranch.AddSubOperator(manipulators[i]);
}
multibranch.GetVariableInfo("Probabilities").Local = true;
multibranch.AddVariable(new HeuristicLab.Core.Variable("Probabilities", probabilities));
manipulator.OperatorGraph.AddOperator(multibranch);
manipulator.OperatorGraph.InitialOperator = multibranch;
return manipulator;
}
protected internal override IOperator CreateBestSolutionProcessor() {
SequentialProcessor bestSolutionProcessor = new SequentialProcessor();
MeanSquaredErrorEvaluator testMseEvaluator = new MeanSquaredErrorEvaluator();
testMseEvaluator.Name = "TestMeanSquaredErrorEvaluator";
testMseEvaluator.GetVariableInfo("MSE").ActualName = "TestQuality";
testMseEvaluator.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
testMseEvaluator.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
MeanAbsolutePercentageErrorEvaluator trainingMapeEvaluator = new MeanAbsolutePercentageErrorEvaluator();
trainingMapeEvaluator.Name = "TrainingMapeEvaluator";
trainingMapeEvaluator.GetVariableInfo("MAPE").ActualName = "TrainingMAPE";
trainingMapeEvaluator.GetVariableInfo("SamplesStart").ActualName = "TrainingSamplesStart";
trainingMapeEvaluator.GetVariableInfo("SamplesEnd").ActualName = "TrainingSamplesEnd";
MeanAbsolutePercentageErrorEvaluator validationMapeEvaluator = new MeanAbsolutePercentageErrorEvaluator();
validationMapeEvaluator.Name = "ValidationMapeEvaluator";
validationMapeEvaluator.GetVariableInfo("MAPE").ActualName = "ValidationMAPE";
validationMapeEvaluator.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
validationMapeEvaluator.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
MeanAbsolutePercentageErrorEvaluator testMapeEvaluator = new MeanAbsolutePercentageErrorEvaluator();
testMapeEvaluator.Name = "TestMapeEvaluator";
testMapeEvaluator.GetVariableInfo("MAPE").ActualName = "TestMAPE";
testMapeEvaluator.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
testMapeEvaluator.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
MeanAbsolutePercentageOfRangeErrorEvaluator trainingMapreEvaluator = new MeanAbsolutePercentageOfRangeErrorEvaluator();
trainingMapreEvaluator.Name = "TrainingMapreEvaluator";
trainingMapreEvaluator.GetVariableInfo("MAPRE").ActualName = "TrainingMAPRE";
trainingMapreEvaluator.GetVariableInfo("SamplesStart").ActualName = "TrainingSamplesStart";
trainingMapreEvaluator.GetVariableInfo("SamplesEnd").ActualName = "TrainingSamplesEnd";
MeanAbsolutePercentageOfRangeErrorEvaluator validationMapreEvaluator = new MeanAbsolutePercentageOfRangeErrorEvaluator();
validationMapreEvaluator.Name = "ValidationMapreEvaluator";
validationMapreEvaluator.GetVariableInfo("MAPRE").ActualName = "ValidationMAPRE";
validationMapreEvaluator.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
validationMapreEvaluator.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
MeanAbsolutePercentageOfRangeErrorEvaluator testMapreEvaluator = new MeanAbsolutePercentageOfRangeErrorEvaluator();
testMapreEvaluator.Name = "TestMapreEvaluator";
testMapreEvaluator.GetVariableInfo("MAPRE").ActualName = "TestMAPRE";
testMapreEvaluator.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
testMapreEvaluator.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
CoefficientOfDeterminationEvaluator trainingR2Evaluator = new CoefficientOfDeterminationEvaluator();
trainingR2Evaluator.Name = "TrainingR2Evaluator";
trainingR2Evaluator.GetVariableInfo("R2").ActualName = "TrainingR2";
trainingR2Evaluator.GetVariableInfo("SamplesStart").ActualName = "TrainingSamplesStart";
trainingR2Evaluator.GetVariableInfo("SamplesEnd").ActualName = "TrainingSamplesEnd";
CoefficientOfDeterminationEvaluator validationR2Evaluator = new CoefficientOfDeterminationEvaluator();
validationR2Evaluator.Name = "ValidationR2Evaluator";
validationR2Evaluator.GetVariableInfo("R2").ActualName = "ValidationR2";
validationR2Evaluator.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
validationR2Evaluator.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
CoefficientOfDeterminationEvaluator testR2Evaluator = new CoefficientOfDeterminationEvaluator();
testR2Evaluator.Name = "TestR2Evaluator";
testR2Evaluator.GetVariableInfo("R2").ActualName = "TestR2";
testR2Evaluator.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
testR2Evaluator.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
VarianceAccountedForEvaluator trainingVAFEvaluator = new VarianceAccountedForEvaluator();
trainingVAFEvaluator.Name = "TrainingVAFEvaluator";
trainingVAFEvaluator.GetVariableInfo("VAF").ActualName = "TrainingVAF";
trainingVAFEvaluator.GetVariableInfo("SamplesStart").ActualName = "TrainingSamplesStart";
trainingVAFEvaluator.GetVariableInfo("SamplesEnd").ActualName = "TrainingSamplesEnd";
VarianceAccountedForEvaluator validationVAFEvaluator = new VarianceAccountedForEvaluator();
validationVAFEvaluator.Name = "ValidationVAFEvaluator";
validationVAFEvaluator.GetVariableInfo("VAF").ActualName = "ValidationVAF";
validationVAFEvaluator.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
validationVAFEvaluator.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
VarianceAccountedForEvaluator testVAFEvaluator = new VarianceAccountedForEvaluator();
testVAFEvaluator.Name = "TestVAFEvaluator";
testVAFEvaluator.GetVariableInfo("VAF").ActualName = "TestVAF";
testVAFEvaluator.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
testVAFEvaluator.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
ProgrammableOperator progOperator = new ProgrammableOperator();
progOperator.RemoveVariableInfo("Result");
progOperator.AddVariableInfo(new HeuristicLab.Core.VariableInfo("EvaluatedSolutions", "", typeof(IntData), VariableKind.In));
progOperator.Code = @"
int evalSolutions = EvaluatedSolutions.Data;
scope.AddVariable(new Variable(""EvaluatedSolutions"", new IntData(evalSolutions)));
";
bestSolutionProcessor.AddSubOperator(testMseEvaluator);
bestSolutionProcessor.AddSubOperator(trainingMapeEvaluator);
bestSolutionProcessor.AddSubOperator(validationMapeEvaluator);
bestSolutionProcessor.AddSubOperator(testMapeEvaluator);
bestSolutionProcessor.AddSubOperator(trainingMapreEvaluator);
bestSolutionProcessor.AddSubOperator(validationMapreEvaluator);
bestSolutionProcessor.AddSubOperator(testMapreEvaluator);
bestSolutionProcessor.AddSubOperator(trainingR2Evaluator);
bestSolutionProcessor.AddSubOperator(validationR2Evaluator);
bestSolutionProcessor.AddSubOperator(testR2Evaluator);
bestSolutionProcessor.AddSubOperator(trainingVAFEvaluator);
bestSolutionProcessor.AddSubOperator(validationVAFEvaluator);
bestSolutionProcessor.AddSubOperator(testVAFEvaluator);
bestSolutionProcessor.AddSubOperator(progOperator);
return bestSolutionProcessor;
}
protected internal override IOperator CreateLoggingOperator() {
CombinedOperator loggingOperator = new CombinedOperator();
loggingOperator.Name = "Logging";
SequentialProcessor seq = new SequentialProcessor();
DataCollector collector = new DataCollector();
ItemList names = collector.GetVariable("VariableNames").GetValue>();
names.Add(new StringData("BestQuality"));
names.Add(new StringData("AverageQuality"));
names.Add(new StringData("WorstQuality"));
names.Add(new StringData("BestValidationQuality"));
names.Add(new StringData("AverageValidationQuality"));
names.Add(new StringData("WorstValidationQuality"));
LinechartInjector lineChartInjector = new LinechartInjector();
lineChartInjector.GetVariableInfo("Linechart").ActualName = "Quality Linechart";
lineChartInjector.GetVariable("NumberOfLines").GetValue().Data = 6;
QualityLogger qualityLogger = new QualityLogger();
QualityLogger validationQualityLogger = new QualityLogger();
validationQualityLogger.Name = "ValidationQualityLogger";
validationQualityLogger.GetVariableInfo("Quality").ActualName = "ValidationQuality";
validationQualityLogger.GetVariableInfo("QualityLog").ActualName = "ValidationQualityLog";
seq.AddSubOperator(collector);
seq.AddSubOperator(lineChartInjector);
seq.AddSubOperator(qualityLogger);
seq.AddSubOperator(validationQualityLogger);
loggingOperator.OperatorGraph.AddOperator(seq);
loggingOperator.OperatorGraph.InitialOperator = seq;
return loggingOperator;
}
protected internal override Model CreateGPModel(IScope bestModelScope) {
Model model = base.CreateGPModel(bestModelScope);
model.TestMeanSquaredError = bestModelScope.GetVariableValue("TestQuality", false).Data;
model.TrainingCoefficientOfDetermination = bestModelScope.GetVariableValue("TrainingR2", false).Data;
model.ValidationCoefficientOfDetermination = bestModelScope.GetVariableValue("ValidationR2", false).Data;
model.TestCoefficientOfDetermination = bestModelScope.GetVariableValue("TestR2", false).Data;
model.TrainingMeanAbsolutePercentageError = bestModelScope.GetVariableValue("TrainingMAPE", false).Data;
model.ValidationMeanAbsolutePercentageError = bestModelScope.GetVariableValue("ValidationMAPE", false).Data;
model.TestMeanAbsolutePercentageError = bestModelScope.GetVariableValue("TestMAPE", false).Data;
model.TrainingMeanAbsolutePercentageOfRangeError = bestModelScope.GetVariableValue("TrainingMAPRE", false).Data;
model.ValidationMeanAbsolutePercentageOfRangeError = bestModelScope.GetVariableValue("ValidationMAPRE", false).Data;
model.TestMeanAbsolutePercentageOfRangeError = bestModelScope.GetVariableValue("TestMAPRE", false).Data;
model.TrainingVarianceAccountedFor = bestModelScope.GetVariableValue("TrainingVAF", false).Data;
model.ValidationVarianceAccountedFor = bestModelScope.GetVariableValue("ValidationVAF", false).Data;
model.TestVarianceAccountedFor = bestModelScope.GetVariableValue("TestVAF", false).Data;
return model;
}
public virtual IEditor CreateEditor() {
return new StandardGpEditor(this);
}
public override IView CreateView() {
return new StandardGpEditor(this);
}
}
}