#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.GP.Interfaces;
using HeuristicLab.Modeling;
using HeuristicLab.DataAnalysis;
using HeuristicLab.Common;
namespace HeuristicLab.GP.StructureIdentification {
public class LinearScalingPredictorBuilder : OperatorBase {
public LinearScalingPredictorBuilder()
: base() {
AddVariableInfo(new VariableInfo("FunctionTree", "The function tree", typeof(IGeneticProgrammingModel), VariableKind.In));
AddVariableInfo(new VariableInfo("Beta", "Beta parameter for linear scaling as calculated by LinearScaler", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo("Alpha", "Alpha parameter for linear scaling as calculated by LinearScaler", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo("UpperEstimationLimit", "Upper limit for estimated value (optional)", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo("LowerEstimationLimit", "Lower limit for estimated value (optional)", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo("Predictor", "The predictor combines the function tree and the evaluator and can be used to generate estimated values", typeof(IPredictor), VariableKind.New));
}
public override string Description {
get { return "Extracts the function tree scales the output of the tree and combines the scaled tree with a HL3TreeEvaluator to a predictor for the model analyzer."; }
}
public override IOperation Apply(IScope scope) {
IGeneticProgrammingModel model = GetVariableValue("FunctionTree", scope, true);
//double punishmentFactor = GetVariableValue("PunishmentFactor", scope, true).Data;
//Dataset dataset = GetVariableValue("Dataset", scope, true);
//int start = GetVariableValue("TrainingSamplesStart", scope, true).Data;
//int end = GetVariableValue("TrainingSamplesEnd", scope, true).Data;
//string targetVariable = GetVariableValue("TargetVariable", scope, true).Data;
double alpha = GetVariableValue("Alpha", scope, true).Data;
double beta = GetVariableValue("Beta", scope, true).Data;
DoubleData lowerLimit = GetVariableValue("LowerEstimationLimit", scope, true, false);
DoubleData upperLimit = GetVariableValue("UpperEstimationLimit", scope, true, false);
IPredictor predictor;
if (lowerLimit == null || upperLimit == null)
predictor = CreatePredictor(model, beta, alpha, double.NegativeInfinity, double.PositiveInfinity);
else
predictor = CreatePredictor(model, beta, alpha, lowerLimit.Data, upperLimit.Data);
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Predictor"), predictor));
return null;
}
public static IPredictor CreatePredictor(IGeneticProgrammingModel model, double beta, double alpha, double lowerLimit, double upperLimit) {
var evaluator = new HL3TreeEvaluator();
evaluator.LowerEvaluationLimit = lowerLimit;
evaluator.UpperEvaluationLimit = upperLimit;
var resultModel = new GeneticProgrammingModel(MakeSum(MakeProduct(model.FunctionTree, beta), alpha));
return new Predictor(evaluator, resultModel, lowerLimit, upperLimit);
}
private static IFunctionTree MakeSum(IFunctionTree tree, double x) {
if (x.IsAlmost(0.0)) return tree;
var sum = (new Addition()).GetTreeNode();
sum.AddSubTree(tree);
sum.AddSubTree(MakeConstant(x));
return sum;
}
private static IFunctionTree MakeProduct(IFunctionTree tree, double a) {
if (a.IsAlmost(1.0)) return tree;
var prod = (new Multiplication()).GetTreeNode();
prod.AddSubTree(tree);
prod.AddSubTree(MakeConstant(a));
return prod;
}
private static IFunctionTree MakeConstant(double x) {
var constX = (ConstantFunctionTree)(new Constant()).GetTreeNode();
constX.Value = x;
return constX;
}
}
}