[2722] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.GP.Interfaces;
|
---|
| 29 | using HeuristicLab.Modeling;
|
---|
| 30 | using HeuristicLab.DataAnalysis;
|
---|
| 31 | using HeuristicLab.Common;
|
---|
| 32 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
| 33 | public class LinearScalingPredictorBuilder : OperatorBase {
|
---|
| 34 | public LinearScalingPredictorBuilder()
|
---|
| 35 | : base() {
|
---|
| 36 | AddVariableInfo(new VariableInfo("FunctionTree", "The function tree", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
[2977] | 37 | AddVariableInfo(new VariableInfo("Beta", "Beta parameter for linear scaling as calculated by LinearScaler", typeof(DoubleData), VariableKind.In));
|
---|
| 38 | AddVariableInfo(new VariableInfo("Alpha", "Alpha parameter for linear scaling as calculated by LinearScaler", typeof(DoubleData), VariableKind.In));
|
---|
| 39 | AddVariableInfo(new VariableInfo("UpperEstimationLimit", "Upper limit for estimated value (optional)", typeof(DoubleData), VariableKind.In));
|
---|
| 40 | AddVariableInfo(new VariableInfo("LowerEstimationLimit", "Lower limit for estimated value (optional)", typeof(DoubleData), VariableKind.In));
|
---|
[2722] | 41 | AddVariableInfo(new VariableInfo("Predictor", "The predictor combines the function tree and the evaluator and can be used to generate estimated values", typeof(IPredictor), VariableKind.New));
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public override string Description {
|
---|
| 45 | get { return "Extracts the function tree scales the output of the tree and combines the scaled tree with a HL3TreeEvaluator to a predictor for the model analyzer."; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public override IOperation Apply(IScope scope) {
|
---|
| 49 | IGeneticProgrammingModel model = GetVariableValue<IGeneticProgrammingModel>("FunctionTree", scope, true);
|
---|
[2977] | 50 | //double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
|
---|
| 51 | //Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
| 52 | //int start = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
| 53 | //int end = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
| 54 | //string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
| 55 | double alpha = GetVariableValue<DoubleData>("Alpha", scope, true).Data;
|
---|
| 56 | double beta = GetVariableValue<DoubleData>("Beta", scope, true).Data;
|
---|
| 57 | DoubleData lowerLimit = GetVariableValue<DoubleData>("LowerEstimationLimit", scope, true, false);
|
---|
| 58 | DoubleData upperLimit = GetVariableValue<DoubleData>("UpperEstimationLimit", scope, true, false);
|
---|
| 59 | IPredictor predictor;
|
---|
| 60 | if (lowerLimit == null || upperLimit == null)
|
---|
| 61 | predictor = CreatePredictor(model, beta, alpha, double.NegativeInfinity, double.PositiveInfinity);
|
---|
| 62 | else
|
---|
| 63 | predictor = CreatePredictor(model, beta, alpha, lowerLimit.Data, upperLimit.Data);
|
---|
[2722] | 64 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Predictor"), predictor));
|
---|
| 65 | return null;
|
---|
| 66 | }
|
---|
| 67 |
|
---|
[2977] | 68 | public static IPredictor CreatePredictor(IGeneticProgrammingModel model, double beta, double alpha, double lowerLimit, double upperLimit) {
|
---|
[2722] | 69 |
|
---|
| 70 | var evaluator = new HL3TreeEvaluator();
|
---|
[2977] | 71 | evaluator.LowerEvaluationLimit = lowerLimit;
|
---|
| 72 | evaluator.UpperEvaluationLimit = upperLimit;
|
---|
| 73 | var resultModel = new GeneticProgrammingModel(MakeSum(MakeProduct(model.FunctionTree, beta), alpha));
|
---|
| 74 | return new Predictor(evaluator, resultModel, lowerLimit, upperLimit);
|
---|
[2722] | 75 | }
|
---|
| 76 |
|
---|
| 77 | private static IFunctionTree MakeSum(IFunctionTree tree, double x) {
|
---|
| 78 | if (x.IsAlmost(0.0)) return tree;
|
---|
| 79 | var sum = (new Addition()).GetTreeNode();
|
---|
| 80 | sum.AddSubTree(tree);
|
---|
| 81 | sum.AddSubTree(MakeConstant(x));
|
---|
| 82 | return sum;
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | private static IFunctionTree MakeProduct(IFunctionTree tree, double a) {
|
---|
| 86 | if (a.IsAlmost(1.0)) return tree;
|
---|
| 87 | var prod = (new Multiplication()).GetTreeNode();
|
---|
| 88 | prod.AddSubTree(tree);
|
---|
| 89 | prod.AddSubTree(MakeConstant(a));
|
---|
| 90 | return prod;
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | private static IFunctionTree MakeConstant(double x) {
|
---|
| 94 | var constX = (ConstantFunctionTree)(new Constant()).GetTreeNode();
|
---|
| 95 | constX.Value = x;
|
---|
| 96 | return constX;
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 | }
|
---|