#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.GP.StructureIdentification; using HeuristicLab.DataAnalysis; namespace HeuristicLab.GP.StructureIdentification.TimeSeries { public class TheilInequalityCoefficientEvaluator : GPEvaluatorBase { public override string Description { get { return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates the 'Theil inequality coefficient (Theil's U2 not U1!)' of estimated values vs. real values of 'TargetVariable'. U2 = Sqrt(1/N * Sum(P_t - A_t)^2 ) / Sqrt(1/N * Sum(A_t)^2 ) where P_t is the predicted change of the target variable and A_t is the measured (original) change. (P_t = y'_t - y_(t-1), A_t = y_t - y_(t-1)). U2 is 0 for a perfect prediction and 1 for the naive model y'_t = y_(t-1). An U2 > 1 means the model is worse than the naive model (=> model is useless)."; } } public TheilInequalityCoefficientEvaluator() : base() { AddVariableInfo(new VariableInfo("TheilInequalityCoefficient", "Theil's inequality coefficient (U2) of the model", typeof(DoubleData), VariableKind.New)); AddVariableInfo(new VariableInfo("TheilInequalityCoefficientBias", "Bias proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New)); AddVariableInfo(new VariableInfo("TheilInequalityCoefficientVariance", "Variance proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New)); AddVariableInfo(new VariableInfo("TheilInequalityCoefficientCovariance", "Covariance proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New)); } public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { #region create result variables DoubleData theilInequaliy = GetVariableValue("TheilInequalityCoefficient", scope, false, false); if (theilInequaliy == null) { theilInequaliy = new DoubleData(); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficient"), theilInequaliy)); } DoubleData uBias = GetVariableValue("TheilInequalityCoefficientBias", scope, false, false); if (uBias == null) { uBias = new DoubleData(); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientBias"), uBias)); } DoubleData uVariance = GetVariableValue("TheilInequalityCoefficientVariance", scope, false, false); if (uVariance == null) { uVariance = new DoubleData(); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientVariance"), uVariance)); } DoubleData uCovariance = GetVariableValue("TheilInequalityCoefficientCovariance", scope, false, false); if (uCovariance == null) { uCovariance = new DoubleData(); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientCovariance"), uCovariance)); } #endregion double errorsSquaredSum = 0.0; double originalSquaredSum = 0.0; double[] estimatedChanges = new double[end - start]; double[] originalChanges = new double[end - start]; int nSamples = 0; for (int sample = start; sample < end; sample++) { double prevValue = dataset.GetValue(sample - 1, targetVariable); double estimatedChange = evaluator.Evaluate(tree, sample) - prevValue; double originalChange = dataset.GetValue(sample, targetVariable) - prevValue; if (updateTargetValues) { dataset.SetValue(sample, targetVariable, estimatedChange + prevValue); } if (!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) { double error = estimatedChange - originalChange; errorsSquaredSum += error * error; originalSquaredSum += originalChange * originalChange; estimatedChanges[sample - start] = estimatedChange; originalChanges[sample - start] = originalChange; nSamples++; } } double quality = Math.Sqrt(errorsSquaredSum / nSamples) / Math.Sqrt(originalSquaredSum / nSamples); if (double.IsNaN(quality) || double.IsInfinity(quality)) quality = double.MaxValue; theilInequaliy.Data = quality; // U2 // decomposition into U_bias + U_variance + U_covariance parts double bias = Statistics.Mean(estimatedChanges) - Statistics.Mean(originalChanges); bias *= bias; // squared uBias.Data = bias / (errorsSquaredSum / nSamples); double variance = Statistics.StandardDeviation(estimatedChanges) - Statistics.StandardDeviation(originalChanges); variance *= variance; // squared uVariance.Data = variance / (errorsSquaredSum / nSamples); // all parts add up to one so I don't have to calculate the correlation coefficient for the covariance proportion uCovariance.Data = 1.0 - uBias.Data - uVariance.Data; } } }