#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.GP.StructureIdentification;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.GP.StructureIdentification.TimeSeries {
public class TheilInequalityCoefficientEvaluator : GPEvaluatorBase {
public override string Description {
get {
return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
the 'Theil inequality coefficient (Theil's U2 not U1!)' of estimated values vs. real values of 'TargetVariable'.
U2 = Sqrt(1/N * Sum(P_t - A_t)^2 ) / Sqrt(1/N * Sum(A_t)^2 )
where P_t is the predicted change of the target variable and A_t is the measured (original) change.
(P_t = y'_t - y_(t-1), A_t = y_t - y_(t-1)).
U2 is 0 for a perfect prediction and 1 for the naive model y'_t = y_(t-1). An U2 > 1 means the
model is worse than the naive model (=> model is useless).";
}
}
public TheilInequalityCoefficientEvaluator()
: base() {
AddVariableInfo(new VariableInfo("TheilInequalityCoefficient", "Theil's inequality coefficient (U2) of the model", typeof(DoubleData), VariableKind.New));
AddVariableInfo(new VariableInfo("TheilInequalityCoefficientBias", "Bias proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New));
AddVariableInfo(new VariableInfo("TheilInequalityCoefficientVariance", "Variance proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New));
AddVariableInfo(new VariableInfo("TheilInequalityCoefficientCovariance", "Covariance proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New));
}
public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {
#region create result variables
DoubleData theilInequaliy = GetVariableValue("TheilInequalityCoefficient", scope, false, false);
if (theilInequaliy == null) {
theilInequaliy = new DoubleData();
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficient"), theilInequaliy));
}
DoubleData uBias = GetVariableValue("TheilInequalityCoefficientBias", scope, false, false);
if (uBias == null) {
uBias = new DoubleData();
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientBias"), uBias));
}
DoubleData uVariance = GetVariableValue("TheilInequalityCoefficientVariance", scope, false, false);
if (uVariance == null) {
uVariance = new DoubleData();
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientVariance"), uVariance));
}
DoubleData uCovariance = GetVariableValue("TheilInequalityCoefficientCovariance", scope, false, false);
if (uCovariance == null) {
uCovariance = new DoubleData();
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientCovariance"), uCovariance));
}
#endregion
double errorsSquaredSum = 0.0;
double originalSquaredSum = 0.0;
double[] estimatedChanges = new double[end - start];
double[] originalChanges = new double[end - start];
int nSamples = 0;
for (int sample = start; sample < end; sample++) {
double prevValue = dataset.GetValue(sample - 1, targetVariable);
double estimatedChange = evaluator.Evaluate(tree, sample) - prevValue;
double originalChange = dataset.GetValue(sample, targetVariable) - prevValue;
if (updateTargetValues) {
dataset.SetValue(sample, targetVariable, estimatedChange + prevValue);
}
if (!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) {
double error = estimatedChange - originalChange;
errorsSquaredSum += error * error;
originalSquaredSum += originalChange * originalChange;
estimatedChanges[sample - start] = estimatedChange;
originalChanges[sample - start] = originalChange;
nSamples++;
}
}
double quality = Math.Sqrt(errorsSquaredSum / nSamples) / Math.Sqrt(originalSquaredSum / nSamples);
if (double.IsNaN(quality) || double.IsInfinity(quality))
quality = double.MaxValue;
theilInequaliy.Data = quality; // U2
// decomposition into U_bias + U_variance + U_covariance parts
double bias = Statistics.Mean(estimatedChanges) - Statistics.Mean(originalChanges);
bias *= bias; // squared
uBias.Data = bias / (errorsSquaredSum / nSamples);
double variance = Statistics.StandardDeviation(estimatedChanges) - Statistics.StandardDeviation(originalChanges);
variance *= variance; // squared
uVariance.Data = variance / (errorsSquaredSum / nSamples);
// all parts add up to one so I don't have to calculate the correlation coefficient for the covariance proportion
uCovariance.Data = 1.0 - uBias.Data - uVariance.Data;
}
}
}