#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.GP.StructureIdentification.ConditionalEvaluation {
public abstract class ConditionalEvaluatorBase : GPEvaluatorBase {
public virtual string OutputVariableName { get { return "Quality"; } }
public ConditionalEvaluatorBase()
: base() {
AddVariableInfo(new VariableInfo("MaxTimeOffset", "Maximal time offset for all feature", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("MinTimeOffset", "Minimal time offset for all feature", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("ConditionVariable", "Variable index which indicates if the row should be evaluated (0 means do not evaluate, != 0 evaluate)", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo(OutputVariableName, OutputVariableName, typeof(DoubleData), VariableKind.New | VariableKind.Out));
}
public override void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {
int maxTimeOffset = GetVariableValue("MaxTimeOffset", scope, true).Data;
int minTimeOffset = GetVariableValue("MinTimeOffset", scope, true).Data;
int conditionVariable = GetVariableValue("ConditionVariable", scope, true).Data;
int skippedSampels = 0;
// store original and estimated values in a double array
double[,] values = new double[end - start, 2];
for (int sample = start; sample < end; sample++) {
// check if condition variable is true between sample - minTimeOffset and sample - maxTimeOffset
bool skip = false;
for (int checkIndex = sample + minTimeOffset; checkIndex <= sample + maxTimeOffset && !skip; checkIndex++) {
if (dataset.GetValue(checkIndex, conditionVariable) == 0) {
skip = true;
skippedSampels++;
}
}
if (!skip) {
double original = dataset.GetValue(sample, targetVariable);
double estimated = evaluator.Evaluate(sample);
if (updateTargetValues) {
dataset.SetValue(sample, targetVariable, estimated);
}
values[sample - start - skippedSampels, 0] = estimated;
values[sample - start - skippedSampels, 1] = original;
}
}
//needed because otherwise the array is too larged dimension and therefore the sample count is false during calculation
ResizeArray(ref values, 2, end - start - skippedSampels);
// calculate quality value
double quality = Evaluate(values);
DoubleData qualityData = GetVariableValue(OutputVariableName, scope, false, false);
if (qualityData == null) {
qualityData = new DoubleData();
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(OutputVariableName), qualityData));
}
qualityData.Data = quality;
scope.GetVariableValue("TotalEvaluatedNodes", true).Data -= skippedSampels;
}
private void ResizeArray(ref double[,] original, int cols, int rows) {
double[,] newArray = new double[rows, cols];
Array.Copy(original, newArray, cols * rows);
original = newArray;
}
public abstract double Evaluate(double[,] values);
}
}