1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using System.Xml;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.DataAnalysis;
|
---|
29 | using HeuristicLab.GP.StructureIdentification;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.GP.StructureIdentification.Classification {
|
---|
32 | public class MulticlassOneVsOneAnalyzer : OperatorBase {
|
---|
33 |
|
---|
34 | private const string DATASET = "Dataset";
|
---|
35 | private const string TARGETVARIABLE = "TargetVariable";
|
---|
36 | private const string TARGETCLASSVALUES = "TargetClassValues";
|
---|
37 | private const string SAMPLESSTART = "SamplesStart";
|
---|
38 | private const string SAMPLESEND = "SamplesEnd";
|
---|
39 | private const string CLASSAVALUE = "ClassAValue";
|
---|
40 | private const string CLASSBVALUE = "ClassBValue";
|
---|
41 | private const string BESTMODELLSCOPE = "BestValidationSolution";
|
---|
42 | private const string BESTMODELL = "FunctionTree";
|
---|
43 | private const string VOTES = "Votes";
|
---|
44 | private const string ACCURACY = "Accuracy";
|
---|
45 |
|
---|
46 | private const double EPSILON = 1E-6;
|
---|
47 | public override string Description {
|
---|
48 | get { return @"TASK"; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public MulticlassOneVsOneAnalyzer()
|
---|
52 | : base() {
|
---|
53 | AddVariableInfo(new VariableInfo(DATASET, "The dataset to use", typeof(Dataset), VariableKind.In));
|
---|
54 | AddVariableInfo(new VariableInfo(TARGETVARIABLE, "Target variable", typeof(IntData), VariableKind.In));
|
---|
55 | AddVariableInfo(new VariableInfo(TARGETCLASSVALUES, "Class values of the target variable in the original dataset", typeof(ItemList<DoubleData>), VariableKind.In));
|
---|
56 | AddVariableInfo(new VariableInfo(CLASSAVALUE, "The original class value of the class A in the subscope", typeof(DoubleData), VariableKind.In));
|
---|
57 | AddVariableInfo(new VariableInfo(CLASSBVALUE, "The original class value of the class B in the subscope", typeof(DoubleData), VariableKind.In));
|
---|
58 | AddVariableInfo(new VariableInfo(SAMPLESSTART, "The start of samples in the original dataset", typeof(IntData), VariableKind.In));
|
---|
59 | AddVariableInfo(new VariableInfo(SAMPLESEND, "The end of samples in the original dataset", typeof(IntData), VariableKind.In));
|
---|
60 | AddVariableInfo(new VariableInfo(BESTMODELLSCOPE, "The variable containing the scope of the model (incl. meta data)", typeof(IScope), VariableKind.In));
|
---|
61 | AddVariableInfo(new VariableInfo(BESTMODELL, "The variable in the scope of the model that contains the actual model", typeof(BakedFunctionTree), VariableKind.In));
|
---|
62 | AddVariableInfo(new VariableInfo(VOTES, "Array with the votes for each instance", typeof(IntMatrixData), VariableKind.New));
|
---|
63 | AddVariableInfo(new VariableInfo(ACCURACY, "Accuracy of the one-vs-one multi-cass classifier", typeof(DoubleData), VariableKind.New));
|
---|
64 | }
|
---|
65 |
|
---|
66 | public override IOperation Apply(IScope scope) {
|
---|
67 | Dataset dataset = GetVariableValue<Dataset>(DATASET, scope, true);
|
---|
68 | int targetVariable = GetVariableValue<IntData>(TARGETVARIABLE, scope, true).Data;
|
---|
69 | int samplesStart = GetVariableValue<IntData>(SAMPLESSTART, scope, true).Data;
|
---|
70 | int samplesEnd = GetVariableValue<IntData>(SAMPLESEND, scope, true).Data;
|
---|
71 | ItemList<DoubleData> classValues = GetVariableValue<ItemList<DoubleData>>(TARGETCLASSVALUES, scope, true);
|
---|
72 | int[,] votes = new int[samplesEnd - samplesStart, classValues.Count];
|
---|
73 |
|
---|
74 | foreach(IScope childScope in scope.SubScopes) {
|
---|
75 | double classAValue = GetVariableValue<DoubleData>(CLASSAVALUE, childScope, true).Data;
|
---|
76 | double classBValue = GetVariableValue<DoubleData>(CLASSBVALUE, childScope, true).Data;
|
---|
77 | IScope bestScope = GetVariableValue<IScope>(BESTMODELLSCOPE, childScope, true);
|
---|
78 | BakedFunctionTree functionTree = GetVariableValue<BakedFunctionTree>(BESTMODELL, bestScope, true);
|
---|
79 |
|
---|
80 | BakedTreeEvaluator evaluator = new BakedTreeEvaluator();
|
---|
81 | evaluator.ResetEvaluator(functionTree, dataset);
|
---|
82 |
|
---|
83 | for(int i = 0; i < (samplesEnd - samplesStart); i++) {
|
---|
84 | double est = evaluator.Evaluate(i + samplesStart);
|
---|
85 | if(est < 0.5) {
|
---|
86 | CastVote(votes, i, classAValue, classValues);
|
---|
87 | } else {
|
---|
88 | CastVote(votes, i, classBValue, classValues);
|
---|
89 | }
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|
93 | int correctlyClassified = 0;
|
---|
94 | for(int i = 0; i < (samplesEnd - samplesStart); i++) {
|
---|
95 | double originalClassValue = dataset.GetValue(i + samplesStart, targetVariable);
|
---|
96 | double estimatedClassValue = classValues[0].Data;
|
---|
97 | int maxVotes = votes[i, 0];
|
---|
98 | int sameVotes = 0;
|
---|
99 | for(int j = 1; j < classValues[j].Data; j++) {
|
---|
100 | if(votes[i, j] > maxVotes) {
|
---|
101 | maxVotes = votes[i, j];
|
---|
102 | estimatedClassValue = classValues[j].Data;
|
---|
103 | sameVotes = 0;
|
---|
104 | } else if(votes[i, j] == maxVotes) {
|
---|
105 | sameVotes++;
|
---|
106 | }
|
---|
107 | }
|
---|
108 | if(IsEqual(originalClassValue, estimatedClassValue) && sameVotes == 0) correctlyClassified++;
|
---|
109 | }
|
---|
110 |
|
---|
111 | double accuracy = correctlyClassified / (double)(samplesEnd - samplesStart);
|
---|
112 |
|
---|
113 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(VOTES), new IntMatrixData(votes)));
|
---|
114 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(ACCURACY), new DoubleData(accuracy)));
|
---|
115 | return null;
|
---|
116 | }
|
---|
117 |
|
---|
118 | private void CastVote(int[,] votes, int sample, double votedClass, ItemList<DoubleData> classValues) {
|
---|
119 | for(int i = 0; i < classValues.Count; i++) {
|
---|
120 | if(IsEqual(classValues[i].Data, votedClass)) votes[sample, i]++;
|
---|
121 | }
|
---|
122 | }
|
---|
123 |
|
---|
124 | private bool IsEqual(double x, double y) {
|
---|
125 | return Math.Abs(x - y) < EPSILON;
|
---|
126 | }
|
---|
127 | }
|
---|
128 | }
|
---|