[645] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.GP.StructureIdentification;
|
---|
[702] | 29 | using HeuristicLab.DataAnalysis;
|
---|
[645] | 30 |
|
---|
[668] | 31 | namespace HeuristicLab.GP.StructureIdentification.Classification {
|
---|
[702] | 32 | public class AccuracyEvaluator : GPClassificationEvaluatorBase {
|
---|
[645] | 33 | private const double EPSILON = 1.0E-6;
|
---|
| 34 | public override string Description {
|
---|
| 35 | get {
|
---|
| 36 | return @"Calculates the total accuracy of the model (ratio of correctly classified instances to total number of instances) given a model and the list of possible target class values.";
|
---|
| 37 | }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | public AccuracyEvaluator()
|
---|
| 41 | : base() {
|
---|
| 42 | AddVariableInfo(new VariableInfo("Accuracy", "The total accuracy of the model (ratio of correctly classified instances to total number of instances)", typeof(DoubleData), VariableKind.New));
|
---|
| 43 | }
|
---|
| 44 |
|
---|
[702] | 45 | public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {
|
---|
| 46 | DoubleData accuracy = GetVariableValue<DoubleData>("Accuracy", scope, false, false);
|
---|
[712] | 47 | if (accuracy == null) {
|
---|
[645] | 48 | accuracy = new DoubleData();
|
---|
| 49 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Accuracy"), accuracy));
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | int nSamples = end - start;
|
---|
| 53 | int nCorrect = 0;
|
---|
[712] | 54 | for (int sample = start; sample < end; sample++) {
|
---|
[702] | 55 | double est = evaluator.Evaluate(sample);
|
---|
[712] | 56 | double origClass = dataset.GetValue(sample, targetVariable);
|
---|
[645] | 57 | double estClass = double.NaN;
|
---|
| 58 | // if estimation is lower than the smallest threshold value -> estimated class is the lower class
|
---|
[712] | 59 | if (est < thresholds[0]) estClass = classes[0];
|
---|
[645] | 60 | // if estimation is larger (or equal) than the largest threshold value -> estimated class is the upper class
|
---|
[712] | 61 | else if (est >= thresholds[thresholds.Length - 1]) estClass = classes[classes.Length - 1];
|
---|
[645] | 62 | else {
|
---|
| 63 | // otherwise the estimated class is the class which upper threshold is larger than the estimated value
|
---|
[712] | 64 | for (int k = 0; k < thresholds.Length; k++) {
|
---|
| 65 | if (thresholds[k] > est) {
|
---|
[702] | 66 | estClass = classes[k];
|
---|
[645] | 67 | break;
|
---|
| 68 | }
|
---|
| 69 | }
|
---|
| 70 | }
|
---|
[712] | 71 | if (Math.Abs(estClass - origClass) < EPSILON) nCorrect++;
|
---|
[645] | 72 | }
|
---|
| 73 | accuracy.Data = nCorrect / (double)nSamples;
|
---|
| 74 | }
|
---|
| 75 | }
|
---|
| 76 | }
|
---|