#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.GP.StructureIdentification.Classification {
public class MulticlassModeller : OperatorBase {
private const string DATASET = "Dataset";
private const string TARGETVARIABLE = "TargetVariable";
private const string TARGETCLASSVALUES = "TargetClassValues";
private const string TRAININGSAMPLESSTART = "TrainingSamplesStart";
private const string TRAININGSAMPLESEND = "TrainingSamplesEnd";
private const string VALIDATIONSAMPLESSTART = "ValidationSamplesStart";
private const string VALIDATIONSAMPLESEND = "ValidationSamplesEnd";
private const string CLASSAVALUE = "ClassAValue";
private const string CLASSBVALUE = "ClassBValue";
private const double EPSILON = 1E-6;
public override string Description {
get { return @"TASK"; }
}
public MulticlassModeller()
: base() {
AddVariableInfo(new VariableInfo(DATASET, "The original dataset and the new dataset parts in the newly created subscopes", typeof(Dataset), VariableKind.In));
AddVariableInfo(new VariableInfo(TARGETVARIABLE, "TargetVariable", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo(TARGETCLASSVALUES, "Class values of the target variable in the original dataset and in the new dataset parts", typeof(ItemList), VariableKind.In | VariableKind.New));
AddVariableInfo(new VariableInfo(CLASSAVALUE, "The original class value of the new class A", typeof(DoubleData), VariableKind.New));
AddVariableInfo(new VariableInfo(CLASSBVALUE, "The original class value of the new class B", typeof(DoubleData), VariableKind.New));
AddVariableInfo(new VariableInfo(TRAININGSAMPLESSTART, "The start of training samples in the original dataset and starts of training samples in the new dataset parts", typeof(IntData), VariableKind.In | VariableKind.New));
AddVariableInfo(new VariableInfo(TRAININGSAMPLESEND, "The end of training samples in the original dataset and ends of training samples in the new dataset parts", typeof(IntData), VariableKind.In | VariableKind.New));
AddVariableInfo(new VariableInfo(VALIDATIONSAMPLESSTART, "The start of validation samples in the original dataset and starts of validation samples in the new dataset parts", typeof(IntData), VariableKind.In | VariableKind.New));
AddVariableInfo(new VariableInfo(VALIDATIONSAMPLESEND, "The end of validation samples in the original dataset and ends of validation samples in the new dataset parts", typeof(IntData), VariableKind.In | VariableKind.New));
}
public override IOperation Apply(IScope scope) {
Dataset origDataset = GetVariableValue(DATASET, scope, true);
int targetVariable = GetVariableValue(TARGETVARIABLE, scope, true).Data;
ItemList classValues = GetVariableValue>(TARGETCLASSVALUES, scope, true);
int origTrainingSamplesStart = GetVariableValue(TRAININGSAMPLESSTART, scope, true).Data;
int origTrainingSamplesEnd = GetVariableValue(TRAININGSAMPLESEND, scope, true).Data;
int origValidationSamplesStart = GetVariableValue(VALIDATIONSAMPLESSTART, scope, true).Data;
int origValidationSamplesEnd = GetVariableValue(VALIDATIONSAMPLESEND, scope, true).Data;
ItemList binaryClassValues = new ItemList();
binaryClassValues.Add(new DoubleData(0.0));
binaryClassValues.Add(new DoubleData(1.0));
for (int i = 0; i < classValues.Count - 1; i++) {
for (int j = i + 1; j < classValues.Count; j++) {
Dataset dataset = new Dataset();
dataset.Columns = origDataset.Columns;
double classAValue = classValues[i].Data;
double classBValue = classValues[j].Data;
int trainingSamplesStart;
int trainingSamplesEnd;
int validationSamplesStart;
int validationSamplesEnd;
trainingSamplesStart = 0;
List rows = new List();
for (int k = origTrainingSamplesStart; k < origTrainingSamplesEnd; k++) {
double[] row = new double[dataset.Columns];
double targetValue = origDataset.GetValue(k, targetVariable);
if (IsEqual(targetValue, classAValue)) {
for (int l = 0; l < row.Length; l++) {
row[l] = origDataset.GetValue(k, l);
}
row[targetVariable] = 0;
rows.Add(row);
} else if (IsEqual(targetValue, classBValue)) {
for (int l = 0; l < row.Length; l++) {
row[l] = origDataset.GetValue(k, l);
}
row[targetVariable] = 1.0;
rows.Add(row);
}
}
trainingSamplesEnd = rows.Count;
validationSamplesStart = rows.Count;
for (int k = origValidationSamplesStart; k < origValidationSamplesEnd; k++) {
double[] row = new double[dataset.Columns];
double targetValue = origDataset.GetValue(k, targetVariable);
if (IsEqual(targetValue, classAValue)) {
for (int l = 0; l < row.Length; l++) {
row[l] = origDataset.GetValue(k, l);
}
row[targetVariable] = 0;
rows.Add(row);
} else if (IsEqual(targetValue, classBValue)) {
for (int l = 0; l < row.Length; l++) {
row[l] = origDataset.GetValue(k, l);
}
row[targetVariable] = 1.0;
rows.Add(row);
}
}
validationSamplesEnd = rows.Count;
dataset.Rows = rows.Count;
dataset.Samples = new double[dataset.Rows * dataset.Columns];
for (int k = 0; k < dataset.Rows; k++) {
for (int l = 0; l < dataset.Columns; l++) {
dataset.SetValue(k, l, rows[k][l]);
}
}
Scope childScope = new Scope(classAValue + " vs. " + classBValue);
childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(TARGETCLASSVALUES), binaryClassValues));
childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(CLASSAVALUE), new DoubleData(classAValue)));
childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(CLASSBVALUE), new DoubleData(classBValue)));
childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(TRAININGSAMPLESSTART), new IntData(trainingSamplesStart)));
childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(TRAININGSAMPLESEND), new IntData(trainingSamplesEnd)));
childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(VALIDATIONSAMPLESSTART), new IntData(validationSamplesStart)));
childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(VALIDATIONSAMPLESEND), new IntData(validationSamplesEnd)));
childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(DATASET), dataset));
scope.AddSubScope(childScope);
}
}
return null;
}
private bool IsEqual(double x, double y) {
return Math.Abs(x - y) < EPSILON;
}
}
}