#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.GP.StructureIdentification;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.GP.StructureIdentification.Classification {
public abstract class GPClassificationEvaluatorBase : GPEvaluatorBase {
public GPClassificationEvaluatorBase()
: base() {
AddVariableInfo(new VariableInfo("TargetClassValues", "The original class values of target variable (for instance negative=0 and positive=1).", typeof(ItemList), VariableKind.In));
}
public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {
ItemList classes = GetVariableValue>("TargetClassValues", scope, true);
double[] classesArr = new double[classes.Count];
for(int i = 0; i < classesArr.Length; i++) classesArr[i] = classes[i].Data;
Array.Sort(classesArr);
double[] thresholds = new double[classes.Count - 1];
for(int i = 0; i < classesArr.Length - 1; i++) {
thresholds[i] = (classesArr[i] + classesArr[i + 1]) / 2.0;
}
Evaluate(scope, evaluator, tree, dataset, targetVariable, classesArr, thresholds, start, end);
}
public abstract void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end);
}
}