#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.DataAnalysis; namespace HeuristicLab.GP.StructureIdentification.Classification { public class AccuracyEvaluator : GPClassificationEvaluatorBase { private const double EPSILON = 1.0E-6; public override string Description { get { return @"Calculates the total accuracy of the model (ratio of correctly classified instances to total number of instances) given a model and the list of possible target class values."; } } public AccuracyEvaluator() : base() { AddVariableInfo(new VariableInfo("Accuracy", "The total accuracy of the model (ratio of correctly classified instances to total number of instances)", typeof(DoubleData), VariableKind.New)); } public override void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) { DoubleData accuracy = GetVariableValue("Accuracy", scope, false, false); if (accuracy == null) { accuracy = new DoubleData(); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Accuracy"), accuracy)); } int nSamples = end - start; int nCorrect = 0; for (int sample = start; sample < end; sample++) { double est = evaluator.Evaluate(sample); double origClass = dataset.GetValue(sample, targetVariable); double estClass = double.NaN; // if estimation is lower than the smallest threshold value -> estimated class is the lower class if (est < thresholds[0]) estClass = classes[0]; // if estimation is larger (or equal) than the largest threshold value -> estimated class is the upper class else if (est >= thresholds[thresholds.Length - 1]) estClass = classes[classes.Length - 1]; else { // otherwise the estimated class is the class which upper threshold is larger than the estimated value for (int k = 0; k < thresholds.Length; k++) { if (thresholds[k] > est) { estClass = classes[k]; break; } } } if (Math.Abs(estClass - origClass) < EPSILON) nCorrect++; } accuracy.Data = nCorrect / (double)nSamples; } } }