#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.GP.StructureIdentification.Classification {
public class AccuracyEvaluator : GPClassificationEvaluatorBase {
private const double EPSILON = 1.0E-6;
public override string Description {
get {
return @"Calculates the total accuracy of the model (ratio of correctly classified instances to total number of instances) given a model and the list of possible target class values.";
}
}
public AccuracyEvaluator()
: base() {
AddVariableInfo(new VariableInfo("Accuracy", "The total accuracy of the model (ratio of correctly classified instances to total number of instances)", typeof(DoubleData), VariableKind.New));
}
public override void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {
DoubleData accuracy = GetVariableValue("Accuracy", scope, false, false);
if (accuracy == null) {
accuracy = new DoubleData();
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Accuracy"), accuracy));
}
int nSamples = end - start;
int nCorrect = 0;
for (int sample = start; sample < end; sample++) {
double est = evaluator.Evaluate(sample);
double origClass = dataset.GetValue(sample, targetVariable);
double estClass = double.NaN;
// if estimation is lower than the smallest threshold value -> estimated class is the lower class
if (est < thresholds[0]) estClass = classes[0];
// if estimation is larger (or equal) than the largest threshold value -> estimated class is the upper class
else if (est >= thresholds[thresholds.Length - 1]) estClass = classes[classes.Length - 1];
else {
// otherwise the estimated class is the class which upper threshold is larger than the estimated value
for (int k = 0; k < thresholds.Length; k++) {
if (thresholds[k] > est) {
estClass = classes[k];
break;
}
}
}
if (Math.Abs(estClass - origClass) < EPSILON) nCorrect++;
}
accuracy.Data = nCorrect / (double)nSamples;
}
}
}