#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using HeuristicLab.Core; using System.Diagnostics; using HeuristicLab.Data; using HeuristicLab.Constraints; using HeuristicLab.DataAnalysis; using HeuristicLab.Random; using HeuristicLab.Operators; namespace HeuristicLab.Functions { public sealed class Variable : FunctionBase { public const string WEIGHT = "Weight"; public const string OFFSET = "SampleOffset"; public const string INDEX = "Variable"; public override string Description { get { return @"Variable reads a value from a dataset, multiplies that value with a given factor and returns the result. The variable 'SampleOffset' can be used to read a value from previous or following rows. The index of the row that is actually read is SampleIndex+SampleOffset)."; } } public Variable() : base() { AddVariableInfo(new VariableInfo(INDEX, "Index of the variable in the dataset representing this feature", typeof(ConstrainedIntData), VariableKind.None)); GetVariableInfo(INDEX).Local = true; AddVariableInfo(new VariableInfo(WEIGHT, "Weight is multiplied to the feature value", typeof(ConstrainedDoubleData), VariableKind.None)); GetVariableInfo(WEIGHT).Local = true; AddVariableInfo(new VariableInfo(OFFSET, "SampleOffset is added to the sample index", typeof(ConstrainedIntData), VariableKind.None)); GetVariableInfo(OFFSET).Local = true; ConstrainedDoubleData weight = new ConstrainedDoubleData(); // initialize a totally arbitrary range for the weight = [-20.0, 20.0] weight.AddConstraint(new DoubleBoundedConstraint(-20.0, 20.0)); AddVariable(new HeuristicLab.Core.Variable(WEIGHT, weight)); ConstrainedIntData variable = new ConstrainedIntData(); AddVariable(new HeuristicLab.Core.Variable(INDEX, variable)); ConstrainedIntData sampleOffset = new ConstrainedIntData(); // initialize a sample offset for static models IntBoundedConstraint offsetConstraint = new IntBoundedConstraint(0, 0); offsetConstraint.LowerBoundIncluded = true; offsetConstraint.UpperBoundIncluded = true; sampleOffset.AddConstraint(offsetConstraint); AddVariable(new HeuristicLab.Core.Variable(OFFSET, sampleOffset)); SetupInitialization(); SetupManipulation(); // variable can't have suboperators AddConstraint(new NumberOfSubOperatorsConstraint(0, 0)); } private void SetupInitialization() { AddVariableInfo(new VariableInfo(INITIALIZATION, "Initialization operator for variables", typeof(CombinedOperator), VariableKind.None)); GetVariableInfo(INITIALIZATION).Local = false; CombinedOperator combinedOp = new CombinedOperator(); SequentialProcessor seq = new SequentialProcessor(); UniformRandomizer indexRandomizer = new UniformRandomizer(); indexRandomizer.Min = 0; indexRandomizer.Max = 10; indexRandomizer.GetVariableInfo("Value").ActualName = INDEX; indexRandomizer.Name = "Index Randomizer"; NormalRandomizer weightRandomizer = new NormalRandomizer(); weightRandomizer.Mu = 1.0; weightRandomizer.Sigma = 1.0; weightRandomizer.GetVariableInfo("Value").ActualName = WEIGHT; weightRandomizer.Name = "Weight Randomizer"; UniformRandomizer offsetRandomizer = new UniformRandomizer(); offsetRandomizer.Min = 0.0; offsetRandomizer.Max = 1.0; offsetRandomizer.GetVariableInfo("Value").ActualName = OFFSET; offsetRandomizer.Name = "Offset Randomizer"; combinedOp.OperatorGraph.AddOperator(seq); combinedOp.OperatorGraph.AddOperator(indexRandomizer); combinedOp.OperatorGraph.AddOperator(weightRandomizer); combinedOp.OperatorGraph.AddOperator(offsetRandomizer); combinedOp.OperatorGraph.InitialOperator = seq; seq.AddSubOperator(indexRandomizer); seq.AddSubOperator(weightRandomizer); seq.AddSubOperator(offsetRandomizer); AddVariable(new HeuristicLab.Core.Variable(INITIALIZATION, combinedOp)); } private void SetupManipulation() { // manipulation operator AddVariableInfo(new VariableInfo(MANIPULATION, "Manipulation operator for variables", typeof(CombinedOperator), VariableKind.None)); GetVariableInfo(MANIPULATION).Local = false; CombinedOperator combinedOp = new CombinedOperator(); SequentialProcessor seq = new SequentialProcessor(); UniformRandomizer indexRandomizer = new UniformRandomizer(); indexRandomizer.Min = 0; indexRandomizer.Max = 10; indexRandomizer.GetVariableInfo("Value").ActualName = INDEX; indexRandomizer.Name = "Index Randomizer"; NormalRandomAdder weightRandomAdder = new NormalRandomAdder(); weightRandomAdder.Mu = 0.0; weightRandomAdder.Sigma = 0.1; weightRandomAdder.GetVariableInfo("Value").ActualName = WEIGHT; weightRandomAdder.Name = "Weight Adder"; NormalRandomAdder offsetRandomAdder = new NormalRandomAdder(); offsetRandomAdder.Mu = 0.0; offsetRandomAdder.Sigma = 1.0; offsetRandomAdder.GetVariableInfo("Value").ActualName = OFFSET; offsetRandomAdder.Name = "Offset Adder"; combinedOp.OperatorGraph.AddOperator(seq); combinedOp.OperatorGraph.AddOperator(indexRandomizer); combinedOp.OperatorGraph.AddOperator(weightRandomAdder); combinedOp.OperatorGraph.AddOperator(offsetRandomAdder); combinedOp.OperatorGraph.InitialOperator = seq; seq.AddSubOperator(indexRandomizer); seq.AddSubOperator(weightRandomAdder); seq.AddSubOperator(offsetRandomAdder); AddVariable(new HeuristicLab.Core.Variable(MANIPULATION, combinedOp)); } public override void Accept(IFunctionVisitor visitor) { visitor.Visit(this); } } }