#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using HeuristicLab.Core;
using System.Diagnostics;
using HeuristicLab.Data;
using HeuristicLab.Constraints;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.Functions {
public class Variable : FunctionBase {
public const string WEIGHT = "Weight";
public const string OFFSET = "SampleOffset";
public const string INDEX = "Variable";
public override string Description {
get { return @"Variable reads a value from a dataset, multiplies that value with a given factor and returns the result.
The variable 'SampleOffset' can be used to read a value from previous or following rows.
The index of the row that is actually read is SampleIndex+SampleOffset)."; }
}
public Variable()
: base() {
AddVariableInfo(new VariableInfo(INDEX, "Index of the variable in the dataset representing this feature", typeof(ConstrainedIntData), VariableKind.None));
GetVariableInfo(INDEX).Local = true;
AddVariableInfo(new VariableInfo(WEIGHT, "Weight is multiplied to the feature value", typeof(ConstrainedDoubleData), VariableKind.None));
GetVariableInfo(WEIGHT).Local = true;
AddVariableInfo(new VariableInfo(OFFSET, "SampleOffset is added to the sample index", typeof(ConstrainedIntData), VariableKind.None));
GetVariableInfo(OFFSET).Local = true;
ConstrainedDoubleData weight = new ConstrainedDoubleData();
// initialize a totally arbitrary range for the weight = [-20.0, 20.0]
weight.AddConstraint(new DoubleBoundedConstraint(-20.0, 20.0));
AddVariable(new HeuristicLab.Core.Variable(WEIGHT, weight));
ConstrainedIntData variable = new ConstrainedIntData();
AddVariable(new HeuristicLab.Core.Variable(INDEX, variable));
ConstrainedIntData sampleOffset = new ConstrainedIntData();
// initialize a totally arbitrary default range for sampleoffset = [-10, 10]
sampleOffset.AddConstraint(new IntBoundedConstraint(0, 0));
AddVariable(new HeuristicLab.Core.Variable(OFFSET, sampleOffset));
// variable can't have suboperators
AddConstraint(new NumberOfSubOperatorsConstraint(0, 0));
}
public override IFunctionTree GetTreeNode() {
return new VariableFunctionTree(this);
}
// can't apply a variable
public override double Apply(Dataset dataset, int sampleIndex, double[] args) {
throw new NotSupportedException();
}
public override void Accept(IFunctionVisitor visitor) {
visitor.Visit(this);
}
}
class VariableFunctionTree : FunctionTree {
private ConstrainedDoubleData weight;
private ConstrainedIntData index;
private ConstrainedIntData offset;
public VariableFunctionTree() : base() { }
public VariableFunctionTree(Variable variable) : base(variable) {
UpdateCachedValues();
}
protected void UpdateCachedValues() {
weight = (ConstrainedDoubleData)GetLocalVariable(Variable.WEIGHT).Value;
index = (ConstrainedIntData)GetLocalVariable(Variable.INDEX).Value;
offset = (ConstrainedIntData)GetLocalVariable(Variable.OFFSET).Value;
}
public override double Evaluate(Dataset dataset, int sampleIndex) {
return weight.Data * dataset.GetValue(sampleIndex + offset.Data, index.Data);
}
public override object Clone(IDictionary clonedObjects) {
VariableFunctionTree clone = (VariableFunctionTree)base.Clone(clonedObjects);
clone.UpdateCachedValues();
return clone;
}
public override void Populate(System.Xml.XmlNode node, IDictionary restoredObjects) {
base.Populate(node, restoredObjects);
UpdateCachedValues();
}
}
}