#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using HeuristicLab.Core; using System.Diagnostics; using HeuristicLab.Data; using HeuristicLab.Constraints; using HeuristicLab.DataAnalysis; namespace HeuristicLab.Functions { public class Variable : FunctionBase { public const string WEIGHT = "Weight"; public const string OFFSET = "SampleOffset"; public const string INDEX = "Variable"; public override string Description { get { return @"Variable reads a value from a dataset, multiplies that value with a given factor and returns the result. The variable 'SampleOffset' can be used to read a value from previous or following rows. The index of the row that is actually read is SampleIndex+SampleOffset)."; } } public Variable() : base() { AddVariableInfo(new VariableInfo(INDEX, "Index of the variable in the dataset representing this feature", typeof(ConstrainedIntData), VariableKind.None)); GetVariableInfo(INDEX).Local = true; AddVariableInfo(new VariableInfo(WEIGHT, "Weight is multiplied to the feature value", typeof(ConstrainedDoubleData), VariableKind.None)); GetVariableInfo(WEIGHT).Local = true; AddVariableInfo(new VariableInfo(OFFSET, "SampleOffset is added to the sample index", typeof(ConstrainedIntData), VariableKind.None)); GetVariableInfo(OFFSET).Local = true; ConstrainedDoubleData weight = new ConstrainedDoubleData(); // initialize a totally arbitrary range for the weight = [-20.0, 20.0] weight.AddConstraint(new DoubleBoundedConstraint(-20.0, 20.0)); AddVariable(new HeuristicLab.Core.Variable(WEIGHT, weight)); ConstrainedIntData variable = new ConstrainedIntData(); AddVariable(new HeuristicLab.Core.Variable(INDEX, variable)); ConstrainedIntData sampleOffset = new ConstrainedIntData(); // initialize a totally arbitrary default range for sampleoffset = [-10, 10] sampleOffset.AddConstraint(new IntBoundedConstraint(0, 0)); AddVariable(new HeuristicLab.Core.Variable(OFFSET, sampleOffset)); // variable can't have suboperators AddConstraint(new NumberOfSubOperatorsConstraint(0, 0)); } public override IFunctionTree GetTreeNode() { return new VariableFunctionTree(this); } // can't apply a variable public override double Apply(Dataset dataset, int sampleIndex, double[] args) { throw new NotSupportedException(); } public override void Accept(IFunctionVisitor visitor) { visitor.Visit(this); } } class VariableFunctionTree : FunctionTree { private ConstrainedDoubleData weight; private ConstrainedIntData index; private ConstrainedIntData offset; public VariableFunctionTree() : base() { } public VariableFunctionTree(Variable variable) : base(variable) { UpdateCachedValues(); } protected void UpdateCachedValues() { weight = (ConstrainedDoubleData)GetLocalVariable(Variable.WEIGHT).Value; index = (ConstrainedIntData)GetLocalVariable(Variable.INDEX).Value; offset = (ConstrainedIntData)GetLocalVariable(Variable.OFFSET).Value; } public override double Evaluate(Dataset dataset, int sampleIndex) { return weight.Data * dataset.GetValue(sampleIndex + offset.Data, index.Data); } public override object Clone(IDictionary clonedObjects) { VariableFunctionTree clone = (VariableFunctionTree)base.Clone(clonedObjects); clone.UpdateCachedValues(); return clone; } public override void Populate(System.Xml.XmlNode node, IDictionary restoredObjects) { base.Populate(node, restoredObjects); UpdateCachedValues(); } } }