#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using HeuristicLab.Core;
using System.Diagnostics;
using HeuristicLab.Data;
using HeuristicLab.Constraints;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.Functions {
public class Variable : FunctionBase {
private ConstrainedIntData variable;
private ConstrainedDoubleData weight;
private ConstrainedIntData sampleOffset;
public double SampleOffset {
get { return sampleOffset.Data; }
}
public int VariableIndex {
get { return variable.Data; }
}
public double Weight {
get { return weight.Data; }
}
public override string Description {
get { return @"Variable reads a value from a dataset, multiplies that value with a given factor and returns the result.
The variable 'SampleOffset' can be used to read a value from previous or following rows.
The index of the row that is actually read is SampleIndex+SampleOffset)."; }
}
public Variable()
: base() {
AddVariableInfo(new VariableInfo("Variable", "Index of the variable in the dataset representing this feature", typeof(ConstrainedIntData), VariableKind.None));
GetVariableInfo("Variable").Local = true;
AddVariableInfo(new VariableInfo("Weight", "Weight is multiplied to the feature value", typeof(ConstrainedDoubleData), VariableKind.None));
GetVariableInfo("Weight").Local = true;
AddVariableInfo(new VariableInfo("SampleOffset", "SampleOffset is added to the sample index", typeof(ConstrainedIntData), VariableKind.None));
GetVariableInfo("SampleOffset").Local = true;
variable = new ConstrainedIntData();
AddLocalVariable(new HeuristicLab.Core.Variable("Variable", variable));
weight = new ConstrainedDoubleData();
// initialize a totally arbitrary range for the weight = [-20.0, 20.0]
weight.AddConstraint(new DoubleBoundedConstraint(-20.0, 20.0));
AddLocalVariable(new HeuristicLab.Core.Variable("Weight", weight));
sampleOffset = new ConstrainedIntData();
// initialize a totally arbitrary default range for sampleoffset = [-10, 10]
sampleOffset.AddConstraint(new IntBoundedConstraint(0, 0));
AddLocalVariable(new HeuristicLab.Core.Variable("SampleOffset", sampleOffset));
// samplefeature can't have suboperators
AddConstraint(new NumberOfSubOperatorsConstraint(0, 0));
}
public Variable(Variable source, IDictionary clonedObjects)
: base(source, clonedObjects) {
variable = (ConstrainedIntData)GetVariable("Variable").Value;
weight = (ConstrainedDoubleData)GetVariable("Weight").Value;
sampleOffset = (ConstrainedIntData)GetVariable("SampleOffset").Value;
}
public override object Clone(IDictionary clonedObjects) {
Variable clone = new Variable(this, clonedObjects);
clonedObjects.Add(clone.Guid, clone);
return clone;
}
public override void Populate(System.Xml.XmlNode node, IDictionary restoredObjects) {
base.Populate(node, restoredObjects);
variable = (ConstrainedIntData)GetVariable("Variable").Value;
weight = (ConstrainedDoubleData)GetVariable("Weight").Value;
sampleOffset = (ConstrainedIntData)GetVariable("SampleOffset").Value;
}
public override double Evaluate(Dataset dataset, int sampleIndex) {
// local variables
int v = variable.Data;
double w = weight.Data;
int offset = sampleOffset.Data;
return w * dataset.GetValue(sampleIndex + offset, v);
}
public override void Accept(IFunctionVisitor visitor) {
visitor.Visit(this);
}
}
}