#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.DataAnalysis;
using HeuristicLab.Core;
using System.Xml;
namespace HeuristicLab.Functions {
internal class BakedTreeEvaluator : IEvaluator {
private const int MAX_TREE_SIZE = 4096;
private class Instr {
public double d_arg0;
public int i_arg0;
public int i_arg1;
public int arity;
public int symbol;
}
private Instr[] codeArr;
private int PC;
private Dataset dataset;
private int sampleIndex;
public BakedTreeEvaluator(Dataset dataset) {
this.dataset = dataset;
codeArr = new Instr[MAX_TREE_SIZE];
for(int i = 0; i < MAX_TREE_SIZE; i++) {
codeArr[i] = new Instr();
}
}
public void ResetEvaluator(IFunctionTree functionTree) {
List linearRepresentation = ((BakedFunctionTree)functionTree).LinearRepresentation;
int i = 0;
foreach(LightWeightFunction f in linearRepresentation) {
TranslateToInstr(f, codeArr[i++]);
}
}
private Instr TranslateToInstr(LightWeightFunction f, Instr instr) {
instr.arity = f.arity;
instr.symbol = EvaluatorSymbolTable.MapFunction(f.functionType);
switch(instr.symbol) {
case EvaluatorSymbolTable.VARIABLE: {
instr.i_arg0 = (int)f.data[0]; // var
instr.d_arg0 = f.data[1]; // weight
instr.i_arg1 = (int)f.data[2]; // sample-offset
break;
}
case EvaluatorSymbolTable.CONSTANT: {
instr.d_arg0 = f.data[0]; // value
break;
}
}
return instr;
}
public double Evaluate(int sampleIndex) {
PC = 0;
this.sampleIndex = sampleIndex;
return EvaluateBakedCode();
}
private double EvaluateBakedCode() {
Instr currInstr = codeArr[PC++];
switch(currInstr.symbol) {
case EvaluatorSymbolTable.VARIABLE: {
int row = sampleIndex + currInstr.i_arg1;
if(row < 0 || row >= dataset.Rows) return double.NaN;
else return currInstr.d_arg0 * dataset.GetValue(row, currInstr.i_arg0);
}
case EvaluatorSymbolTable.CONSTANT: {
return currInstr.d_arg0;
}
case EvaluatorSymbolTable.DIFFERENTIAL: {
int row = sampleIndex + currInstr.i_arg1;
if(row < 1 || row >= dataset.Rows) return double.NaN;
else return currInstr.d_arg0 * (dataset.GetValue(row, currInstr.i_arg0) - dataset.GetValue(row - 1, currInstr.i_arg0));
}
case EvaluatorSymbolTable.MULTIPLICATION: {
double result = EvaluateBakedCode();
for(int i = 1; i < currInstr.arity; i++) {
result *= EvaluateBakedCode();
}
return result;
}
case EvaluatorSymbolTable.ADDITION: {
double sum = EvaluateBakedCode();
for(int i = 1; i < currInstr.arity; i++) {
sum += EvaluateBakedCode();
}
return sum;
}
case EvaluatorSymbolTable.SUBTRACTION: {
if(currInstr.arity == 1) {
return -EvaluateBakedCode();
} else {
double result = EvaluateBakedCode();
for(int i = 1; i < currInstr.arity; i++) {
result -= EvaluateBakedCode();
}
return result;
}
}
case EvaluatorSymbolTable.DIVISION: {
double result;
if(currInstr.arity == 1) {
result = 1.0 / EvaluateBakedCode();
} else {
result = EvaluateBakedCode();
for(int i = 1; i < currInstr.arity; i++) {
result /= EvaluateBakedCode();
}
}
if(double.IsInfinity(result)) return 0.0;
else return result;
}
case EvaluatorSymbolTable.AVERAGE: {
double sum = EvaluateBakedCode();
for(int i = 1; i < currInstr.arity; i++) {
sum += EvaluateBakedCode();
}
return sum / currInstr.arity;
}
case EvaluatorSymbolTable.COSINUS: {
return Math.Cos(EvaluateBakedCode());
}
case EvaluatorSymbolTable.SINUS: {
return Math.Sin(EvaluateBakedCode());
}
case EvaluatorSymbolTable.EXP: {
return Math.Exp(EvaluateBakedCode());
}
case EvaluatorSymbolTable.LOG: {
return Math.Log(EvaluateBakedCode());
}
case EvaluatorSymbolTable.POWER: {
double x = EvaluateBakedCode();
double p = EvaluateBakedCode();
return Math.Pow(x, p);
}
case EvaluatorSymbolTable.SIGNUM: {
double value = EvaluateBakedCode();
if(double.IsNaN(value)) return double.NaN;
else return Math.Sign(value);
}
case EvaluatorSymbolTable.SQRT: {
return Math.Sqrt(EvaluateBakedCode());
}
case EvaluatorSymbolTable.TANGENS: {
return Math.Tan(EvaluateBakedCode());
}
case EvaluatorSymbolTable.AND: {
double result = 1.0;
// have to evaluate all sub-trees, skipping would probably not lead to a big gain because
// we have to iterate over the linear structure anyway
for(int i = 0; i < currInstr.arity; i++) {
double x = Math.Round(EvaluateBakedCode());
if(x == 0 || x == 1.0) result *= x;
else result = double.NaN;
}
return result;
}
case EvaluatorSymbolTable.EQU: {
double x = EvaluateBakedCode();
double y = EvaluateBakedCode();
if(x == y) return 1.0; else return 0.0;
}
case EvaluatorSymbolTable.GT: {
double x = EvaluateBakedCode();
double y = EvaluateBakedCode();
if(x > y) return 1.0;
else return 0.0;
}
case EvaluatorSymbolTable.IFTE: {
double condition = Math.Round(EvaluateBakedCode());
double x = EvaluateBakedCode();
double y = EvaluateBakedCode();
if(condition < .5) return x;
else if(condition >= .5) return y;
else return double.NaN;
}
case EvaluatorSymbolTable.LT: {
double x = EvaluateBakedCode();
double y = EvaluateBakedCode();
if(x < y) return 1.0;
else return 0.0;
}
case EvaluatorSymbolTable.NOT: {
double result = Math.Round(EvaluateBakedCode());
if(result == 0.0) return 1.0;
else if(result == 1.0) return 0.0;
else return double.NaN;
}
case EvaluatorSymbolTable.OR: {
double result = 0.0; // default is false
for(int i = 0; i < currInstr.arity; i++) {
double x = Math.Round(EvaluateBakedCode());
if(x == 1.0 && result == 0.0) result = 1.0; // found first true (1.0) => set to true
else if(x != 0.0) result = double.NaN; // if it was not true it can only be false (0.0) all other cases are undefined => (NaN)
}
return result;
}
case EvaluatorSymbolTable.XOR: {
double x = Math.Round(EvaluateBakedCode());
double y = Math.Round(EvaluateBakedCode());
if(x == 0.0 && y == 0.0) return 0.0;
if(x == 1.0 && y == 0.0) return 1.0;
if(x == 0.0 && y == 1.0) return 1.0;
if(x == 1.0 && y == 1.0) return 0.0;
return double.NaN;
}
default: {
throw new NotImplementedException();
}
}
}
}
}