#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.DataAnalysis; using HeuristicLab.Core; using System.Xml; namespace HeuristicLab.Functions { internal class BakedTreeEvaluator : IEvaluator { private const int MAX_TREE_SIZE = 4096; private class Instr { public double d_arg0; public int i_arg0; public int i_arg1; public int arity; public int symbol; } private Instr[] codeArr; private int PC; private Dataset dataset; private int sampleIndex; public BakedTreeEvaluator(Dataset dataset) { this.dataset = dataset; codeArr = new Instr[MAX_TREE_SIZE]; for(int i = 0; i < MAX_TREE_SIZE; i++) { codeArr[i] = new Instr(); } } public void ResetEvaluator(IFunctionTree functionTree) { List linearRepresentation = ((BakedFunctionTree)functionTree).LinearRepresentation; int i = 0; foreach(LightWeightFunction f in linearRepresentation) { TranslateToInstr(f, codeArr[i++]); } } private Instr TranslateToInstr(LightWeightFunction f, Instr instr) { instr.arity = f.arity; instr.symbol = EvaluatorSymbolTable.MapFunction(f.functionType); switch(instr.symbol) { case EvaluatorSymbolTable.VARIABLE: { instr.i_arg0 = (int)f.data[0]; // var instr.d_arg0 = f.data[1]; // weight instr.i_arg1 = (int)f.data[2]; // sample-offset break; } case EvaluatorSymbolTable.CONSTANT: { instr.d_arg0 = f.data[0]; // value break; } } return instr; } public double Evaluate(int sampleIndex) { PC = 0; this.sampleIndex = sampleIndex; return EvaluateBakedCode(); } private double EvaluateBakedCode() { Instr currInstr = codeArr[PC++]; switch(currInstr.symbol) { case EvaluatorSymbolTable.VARIABLE: { int row = sampleIndex + currInstr.i_arg1; if(row < 0 || row >= dataset.Rows) return double.NaN; else return currInstr.d_arg0 * dataset.GetValue(row, currInstr.i_arg0); } case EvaluatorSymbolTable.CONSTANT: { return currInstr.d_arg0; } case EvaluatorSymbolTable.DIFFERENTIAL: { int row = sampleIndex + currInstr.i_arg1; if(row < 1 || row >= dataset.Rows) return double.NaN; else return currInstr.d_arg0 * (dataset.GetValue(row, currInstr.i_arg0) - dataset.GetValue(row - 1, currInstr.i_arg0)); } case EvaluatorSymbolTable.MULTIPLICATION: { double result = EvaluateBakedCode(); for(int i = 1; i < currInstr.arity; i++) { result *= EvaluateBakedCode(); } return result; } case EvaluatorSymbolTable.ADDITION: { double sum = EvaluateBakedCode(); for(int i = 1; i < currInstr.arity; i++) { sum += EvaluateBakedCode(); } return sum; } case EvaluatorSymbolTable.SUBTRACTION: { if(currInstr.arity == 1) { return -EvaluateBakedCode(); } else { double result = EvaluateBakedCode(); for(int i = 1; i < currInstr.arity; i++) { result -= EvaluateBakedCode(); } return result; } } case EvaluatorSymbolTable.DIVISION: { double result; if(currInstr.arity == 1) { result = 1.0 / EvaluateBakedCode(); } else { result = EvaluateBakedCode(); for(int i = 1; i < currInstr.arity; i++) { result /= EvaluateBakedCode(); } } if(double.IsInfinity(result)) return 0.0; else return result; } case EvaluatorSymbolTable.AVERAGE: { double sum = EvaluateBakedCode(); for(int i = 1; i < currInstr.arity; i++) { sum += EvaluateBakedCode(); } return sum / currInstr.arity; } case EvaluatorSymbolTable.COSINUS: { return Math.Cos(EvaluateBakedCode()); } case EvaluatorSymbolTable.SINUS: { return Math.Sin(EvaluateBakedCode()); } case EvaluatorSymbolTable.EXP: { return Math.Exp(EvaluateBakedCode()); } case EvaluatorSymbolTable.LOG: { return Math.Log(EvaluateBakedCode()); } case EvaluatorSymbolTable.POWER: { double x = EvaluateBakedCode(); double p = EvaluateBakedCode(); return Math.Pow(x, p); } case EvaluatorSymbolTable.SIGNUM: { double value = EvaluateBakedCode(); if(double.IsNaN(value)) return double.NaN; else return Math.Sign(value); } case EvaluatorSymbolTable.SQRT: { return Math.Sqrt(EvaluateBakedCode()); } case EvaluatorSymbolTable.TANGENS: { return Math.Tan(EvaluateBakedCode()); } case EvaluatorSymbolTable.AND: { double result = 1.0; // have to evaluate all sub-trees, skipping would probably not lead to a big gain because // we have to iterate over the linear structure anyway for(int i = 0; i < currInstr.arity; i++) { double x = Math.Round(EvaluateBakedCode()); if(x == 0 || x == 1.0) result *= x; else result = double.NaN; } return result; } case EvaluatorSymbolTable.EQU: { double x = EvaluateBakedCode(); double y = EvaluateBakedCode(); if(x == y) return 1.0; else return 0.0; } case EvaluatorSymbolTable.GT: { double x = EvaluateBakedCode(); double y = EvaluateBakedCode(); if(x > y) return 1.0; else return 0.0; } case EvaluatorSymbolTable.IFTE: { double condition = Math.Round(EvaluateBakedCode()); double x = EvaluateBakedCode(); double y = EvaluateBakedCode(); if(condition < .5) return x; else if(condition >= .5) return y; else return double.NaN; } case EvaluatorSymbolTable.LT: { double x = EvaluateBakedCode(); double y = EvaluateBakedCode(); if(x < y) return 1.0; else return 0.0; } case EvaluatorSymbolTable.NOT: { double result = Math.Round(EvaluateBakedCode()); if(result == 0.0) return 1.0; else if(result == 1.0) return 0.0; else return double.NaN; } case EvaluatorSymbolTable.OR: { double result = 0.0; // default is false for(int i = 0; i < currInstr.arity; i++) { double x = Math.Round(EvaluateBakedCode()); if(x == 1.0 && result == 0.0) result = 1.0; // found first true (1.0) => set to true else if(x != 0.0) result = double.NaN; // if it was not true it can only be false (0.0) all other cases are undefined => (NaN) } return result; } case EvaluatorSymbolTable.XOR: { double x = Math.Round(EvaluateBakedCode()); double y = Math.Round(EvaluateBakedCode()); if(x == 0.0 && y == 0.0) return 0.0; if(x == 1.0 && y == 0.0) return 1.0; if(x == 0.0 && y == 1.0) return 1.0; if(x == 1.0 && y == 1.0) return 0.0; return double.NaN; } default: { throw new NotImplementedException(); } } } } }