/*
* SVM.NET Library
* Copyright (C) 2008 Matthew Johnson
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
using System;
using System.Diagnostics;
using System.IO;
namespace SVM {
///
/// Class containing the routines to perform class membership prediction using a trained SVM.
///
public static class Prediction {
///
/// Predicts the class memberships of all the vectors in the problem.
///
/// The SVM Problem to solve
/// File for result output
/// The Model to use
/// Whether to output a distribution over the classes
/// Percentage correctly labelled
public static double Predict(
Problem problem,
string outputFile,
Model model,
bool predict_probability) {
int correct = 0;
int total = 0;
double error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
StreamWriter output = outputFile != null ? new StreamWriter(outputFile) : null;
SvmType svm_type = Procedures.svm_get_svm_type(model);
int nr_class = Procedures.svm_get_nr_class(model);
int[] labels = new int[nr_class];
double[] prob_estimates = null;
if (predict_probability) {
if (svm_type == SvmType.EPSILON_SVR || svm_type == SvmType.NU_SVR) {
Console.WriteLine("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + Procedures.svm_get_svr_probability(model));
} else {
Procedures.svm_get_labels(model, labels);
prob_estimates = new double[nr_class];
if (output != null) {
output.Write("labels");
for (int j = 0; j < nr_class; j++) {
output.Write(" " + labels[j]);
}
output.Write("\n");
}
}
}
for (int i = 0; i < problem.Count; i++) {
double target = problem.Y[i];
Node[] x = problem.X[i];
double v;
if (predict_probability && (svm_type == SvmType.C_SVC || svm_type == SvmType.NU_SVC)) {
v = Procedures.svm_predict_probability(model, x, prob_estimates);
if (output != null) {
output.Write(v + " ");
for (int j = 0; j < nr_class; j++) {
output.Write(prob_estimates[j] + " ");
}
output.Write("\n");
}
} else {
v = Procedures.svm_predict(model, x);
if (output != null)
output.Write(v + "\n");
}
if (v == target)
++correct;
error += (v - target) * (v - target);
sumv += v;
sumy += target;
sumvv += v * v;
sumyy += target * target;
sumvy += v * target;
++total;
}
if (output != null)
output.Close();
return (double)correct / total;
}
///
/// Predict the class for a single input vector.
///
/// The Model to use for prediction
/// The vector for which to predict class
/// The result
public static double Predict(Model model, Node[] x) {
return Procedures.svm_predict(model, x);
}
///
/// Predicts a class distribution for the single input vector.
///
/// Model to use for prediction
/// The vector for which to predict the class distribution
/// A probability distribtion over classes
public static double[] PredictProbability(Model model, Node[] x) {
SvmType svm_type = Procedures.svm_get_svm_type(model);
if (svm_type != SvmType.C_SVC && svm_type != SvmType.NU_SVC)
throw new Exception("Model type " + svm_type + " unable to predict probabilities.");
int nr_class = Procedures.svm_get_nr_class(model);
double[] probEstimates = new double[nr_class];
Procedures.svm_predict_probability(model, x, probEstimates);
return probEstimates;
}
private static void exit_with_help() {
Debug.Write("usage: svm_predict [options] test_file model_file output_file\n" + "options:\n" + "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n");
Environment.Exit(1);
}
///
/// Legacy method, provided to allow usage as though this were the command line version of libsvm.
///
/// Standard arguments passed to the svm_predict exectutable. See libsvm documentation for details.
[Obsolete("Use the other version of Predict() instead")]
public static void Predict(params string[] args) {
int i = 0;
bool predictProbability = false;
// parse options
for (i = 0; i < args.Length; i++) {
if (args[i][0] != '-')
break;
++i;
switch (args[i - 1][1]) {
case 'b':
predictProbability = int.Parse(args[i]) == 1;
break;
default:
throw new ArgumentException("Unknown option");
}
}
if (i >= args.Length)
throw new ArgumentException("No input, model and output files provided");
Problem problem = Problem.Read(args[i]);
Model model = Model.Read(args[i + 1]);
Predict(problem, args[i + 2], model, predictProbability);
}
}
}