/*
* SVM.NET Library
* Copyright (C) 2008 Matthew Johnson
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
using System;
using System.IO;
namespace SVM {
///
/// Encapsulates an SVM Model.
///
[Serializable]
public class Model {
private Parameter _parameter;
private int _numberOfClasses;
private int _supportVectorCount;
private int[] _supportVectorIndizes;
private Node[][] _supportVectors;
private double[][] _supportVectorCoefficients;
private double[] _rho;
private double[] _pairwiseProbabilityA;
private double[] _pairwiseProbabilityB;
private int[] _classLabels;
private int[] _numberOfSVPerClass;
internal Model() {
}
///
/// Parameter object.
///
public Parameter Parameter {
get {
return _parameter;
}
set {
_parameter = value;
}
}
///
/// Number of classes in the model.
///
public int NumberOfClasses {
get {
return _numberOfClasses;
}
set {
_numberOfClasses = value;
}
}
///
/// Total number of support vectors.
///
public int SupportVectorCount {
get {
return _supportVectorCount;
}
set {
_supportVectorCount = value;
}
}
///
/// Indizes of support vectors identified in the training.
///
public int[] SupportVectorIndizes {
get {
return _supportVectorIndizes;
}
set {
_supportVectorIndizes = value;
}
}
///
/// The support vectors.
///
public Node[][] SupportVectors {
get {
return _supportVectors;
}
set {
_supportVectors = value;
}
}
///
/// The coefficients for the support vectors.
///
public double[][] SupportVectorCoefficients {
get {
return _supportVectorCoefficients;
}
set {
_supportVectorCoefficients = value;
}
}
///
/// Rho values.
///
public double[] Rho {
get {
return _rho;
}
set {
_rho = value;
}
}
///
/// First pairwise probability.
///
public double[] PairwiseProbabilityA {
get {
return _pairwiseProbabilityA;
}
set {
_pairwiseProbabilityA = value;
}
}
///
/// Second pairwise probability.
///
public double[] PairwiseProbabilityB {
get {
return _pairwiseProbabilityB;
}
set {
_pairwiseProbabilityB = value;
}
}
// for classification only
///
/// Class labels.
///
public int[] ClassLabels {
get {
return _classLabels;
}
set {
_classLabels = value;
}
}
///
/// Number of support vectors per class.
///
public int[] NumberOfSVPerClass {
get {
return _numberOfSVPerClass;
}
set {
_numberOfSVPerClass = value;
}
}
///
/// Reads a Model from the provided file.
///
/// The name of the file containing the Model
/// the Model
public static Model Read(string filename) {
FileStream input = File.OpenRead(filename);
try {
return Read(input);
}
finally {
input.Close();
}
}
public static Model Read(Stream stream) {
return Read(new StreamReader(stream));
}
///
/// Reads a Model from the provided stream.
///
/// The stream from which to read the Model.
/// the Model
public static Model Read(TextReader input) {
TemporaryCulture.Start();
// read parameters
Model model = new Model();
Parameter param = new Parameter();
model.Parameter = param;
model.Rho = null;
model.PairwiseProbabilityA = null;
model.PairwiseProbabilityB = null;
model.ClassLabels = null;
model.NumberOfSVPerClass = null;
model.SupportVectorIndizes = new int[0];
bool headerFinished = false;
while (!headerFinished) {
string line = input.ReadLine();
string cmd, arg;
int splitIndex = line.IndexOf(' ');
if (splitIndex >= 0) {
cmd = line.Substring(0, splitIndex);
arg = line.Substring(splitIndex + 1);
} else {
cmd = line;
arg = "";
}
// arg = arg.ToLower(); (transforms double NaN or Infinity values to incorrect format [gkronber])
int i, n;
switch (cmd) {
case "svm_type":
param.SvmType = (SvmType)Enum.Parse(typeof(SvmType), arg.ToUpper());
break;
case "kernel_type":
param.KernelType = (KernelType)Enum.Parse(typeof(KernelType), arg.ToUpper());
break;
case "degree":
param.Degree = int.Parse(arg);
break;
case "gamma":
param.Gamma = double.Parse(arg);
break;
case "coef0":
param.Coefficient0 = double.Parse(arg);
break;
case "nr_class":
model.NumberOfClasses = int.Parse(arg);
break;
case "total_sv":
model.SupportVectorCount = int.Parse(arg);
break;
case "rho":
n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
model.Rho = new double[n];
string[] rhoParts = arg.Split();
for (i = 0; i < n; i++)
model.Rho[i] = double.Parse(rhoParts[i]);
break;
case "label":
n = model.NumberOfClasses;
model.ClassLabels = new int[n];
string[] labelParts = arg.Split();
for (i = 0; i < n; i++)
model.ClassLabels[i] = int.Parse(labelParts[i]);
break;
case "probA":
n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
model.PairwiseProbabilityA = new double[n];
string[] probAParts = arg.Split();
for (i = 0; i < n; i++)
model.PairwiseProbabilityA[i] = double.Parse(probAParts[i]);
break;
case "probB":
n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
model.PairwiseProbabilityB = new double[n];
string[] probBParts = arg.Split();
for (i = 0; i < n; i++)
model.PairwiseProbabilityB[i] = double.Parse(probBParts[i]);
break;
case "nr_sv":
n = model.NumberOfClasses;
model.NumberOfSVPerClass = new int[n];
string[] nrsvParts = arg.Split();
for (i = 0; i < n; i++)
model.NumberOfSVPerClass[i] = int.Parse(nrsvParts[i]);
break;
case "SV":
headerFinished = true;
break;
default:
throw new Exception("Unknown text in model file");
}
}
// read sv_coef and SV
int m = model.NumberOfClasses - 1;
int l = model.SupportVectorCount;
model.SupportVectorCoefficients = new double[m][];
for (int i = 0; i < m; i++) {
model.SupportVectorCoefficients[i] = new double[l];
}
model.SupportVectors = new Node[l][];
for (int i = 0; i < l; i++) {
string[] parts = input.ReadLine().Trim().Split();
for (int k = 0; k < m; k++)
model.SupportVectorCoefficients[k][i] = double.Parse(parts[k]);
int n = parts.Length - m;
model.SupportVectors[i] = new Node[n];
for (int j = 0; j < n; j++) {
string[] nodeParts = parts[m + j].Split(':');
model.SupportVectors[i][j] = new Node();
model.SupportVectors[i][j].Index = int.Parse(nodeParts[0]);
model.SupportVectors[i][j].Value = double.Parse(nodeParts[1]);
}
}
TemporaryCulture.Stop();
return model;
}
///
/// Writes a model to the provided filename. This will overwrite any previous data in the file.
///
/// The desired file
/// The Model to write
public static void Write(string filename, Model model) {
FileStream stream = File.Open(filename, FileMode.Create);
try {
Write(stream, model);
}
finally {
stream.Close();
}
}
///
/// Writes a model to the provided stream.
///
/// The output stream
/// The model to write
public static void Write(Stream stream, Model model) {
TemporaryCulture.Start();
StreamWriter output = new StreamWriter(stream);
Parameter param = model.Parameter;
output.Write("svm_type " + param.SvmType + Environment.NewLine);
output.Write("kernel_type " + param.KernelType + Environment.NewLine);
if (param.KernelType == KernelType.POLY)
output.Write("degree " + param.Degree.ToString("r") + Environment.NewLine);
if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.RBF || param.KernelType == KernelType.SIGMOID)
output.Write("gamma " + param.Gamma.ToString("r") + Environment.NewLine);
if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.SIGMOID)
output.Write("coef0 " + param.Coefficient0.ToString("r") + Environment.NewLine);
int nr_class = model.NumberOfClasses;
int l = model.SupportVectorCount;
output.Write("nr_class " + nr_class + Environment.NewLine);
output.Write("total_sv " + l + Environment.NewLine);
{
output.Write("rho");
for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
output.Write(" " + model.Rho[i].ToString("r"));
output.Write(Environment.NewLine);
}
if (model.ClassLabels != null) {
output.Write("label");
for (int i = 0; i < nr_class; i++)
output.Write(" " + model.ClassLabels[i]);
output.Write(Environment.NewLine);
}
if (model.PairwiseProbabilityA != null)
// regression has probA only
{
output.Write("probA");
for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
output.Write(" " + model.PairwiseProbabilityA[i].ToString("r"));
output.Write(Environment.NewLine);
}
if (model.PairwiseProbabilityB != null) {
output.Write("probB");
for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
output.Write(" " + model.PairwiseProbabilityB[i].ToString("r"));
output.Write(Environment.NewLine);
}
if (model.NumberOfSVPerClass != null) {
output.Write("nr_sv");
for (int i = 0; i < nr_class; i++)
output.Write(" " + model.NumberOfSVPerClass[i].ToString("r"));
output.Write(Environment.NewLine);
}
output.WriteLine("SV");
double[][] sv_coef = model.SupportVectorCoefficients;
Node[][] SV = model.SupportVectors;
for (int i = 0; i < l; i++) {
for (int j = 0; j < nr_class - 1; j++)
output.Write(sv_coef[j][i].ToString("r") + " ");
Node[] p = SV[i];
if (p.Length == 0) {
output.WriteLine();
continue;
}
if (param.KernelType == KernelType.PRECOMPUTED)
output.Write("0:{0}", (int)p[0].Value);
else {
output.Write("{0}:{1}", p[0].Index, p[0].Value.ToString("r"));
for (int j = 1; j < p.Length; j++)
output.Write(" {0}:{1}", p[j].Index, p[j].Value.ToString("r"));
}
output.WriteLine();
}
output.Flush();
TemporaryCulture.Stop();
}
}
}