#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Creators;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Manipulators {
[StorableClass]
[Item("ReplaceBranchManipulation", "Selects a branch of the tree randomly and replaces it with a newly initialized branch (using PTC2).")]
public sealed class ReplaceBranchManipulation : SymbolicExpressionTreeManipulator {
[StorableConstructor]
private ReplaceBranchManipulation(bool deserializing) : base(deserializing) { }
private ReplaceBranchManipulation(ReplaceBranchManipulation original, Cloner cloner) : base(original, cloner) { }
public ReplaceBranchManipulation() : base() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new ReplaceBranchManipulation(this, cloner);
}
protected override void Manipulate(IRandom random, SymbolicExpressionTree symbolicExpressionTree, ISymbolicExpressionGrammar grammar, IntValue maxTreeSize, IntValue maxTreeHeight, out bool success) {
ReplaceRandomBranch(random, symbolicExpressionTree, grammar, maxTreeSize.Value, maxTreeHeight.Value, out success);
}
public static void ReplaceRandomBranch(IRandom random, SymbolicExpressionTree symbolicExpressionTree, ISymbolicExpressionGrammar grammar, int maxTreeSize, int maxTreeHeight, out bool success) {
success = false;
// select any node as parent (except the root node)
var manipulationPoint = (from parent in symbolicExpressionTree.Root.IterateNodesPrefix().Skip(1)
from subtree in parent.SubTrees
select new { Parent = parent, Node = subtree, Index = parent.SubTrees.IndexOf(subtree) }).SelectRandom(random);
int maxSize = maxTreeSize - symbolicExpressionTree.Size + manipulationPoint.Node.GetSize();
int maxHeight = maxTreeHeight - symbolicExpressionTree.Height + manipulationPoint.Node.GetHeight();
// find possible symbols for the node (also considering the existing branches below it)
var allowedSymbols = from symbol in manipulationPoint.Parent.GetAllowedSymbols(manipulationPoint.Index)
where manipulationPoint.Node.Grammar.GetMinExpressionDepth(symbol) <= maxHeight
where manipulationPoint.Node.Grammar.GetMinExpressionLength(symbol) <= maxSize
select symbol;
if (allowedSymbols.Count() <= 1) return;
var seedSymbol = SelectRandomSymbol(random, allowedSymbols); // replace the old node with the new node
var seedNode = seedSymbol.CreateTreeNode();
if (seedNode.HasLocalParameters)
seedNode.ResetLocalParameters(random);
manipulationPoint.Parent.RemoveSubTree(manipulationPoint.Index);
manipulationPoint.Parent.InsertSubTree(manipulationPoint.Index, seedNode);
seedNode = ProbabilisticTreeCreator.PTC2(random, seedNode, maxSize, maxHeight, 0, 0);
success = true;
}
private static Symbol SelectRandomSymbol(IRandom random, IEnumerable symbols) {
var symbolList = symbols.ToList();
var ticketsSum = symbolList.Select(x => x.InitialFrequency).Sum();
if (ticketsSum == 0.0) throw new ArgumentException("The initial frequency of all allowed symbols is zero.");
var r = random.NextDouble() * ticketsSum;
double aggregatedTickets = 0;
for (int i = 0; i < symbolList.Count; i++) {
aggregatedTickets += symbolList[i].InitialFrequency;
if (aggregatedTickets > r) {
return symbolList[i];
}
}
// this should never happen
throw new ArgumentException("There is a problem with the initial frequency setting of allowed symbols.");
}
}
}