#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Creators; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Manipulators { [StorableClass] [Item("ReplaceBranchManipulation", "Selects a branch of the tree randomly and replaces it with a newly initialized branch (using PTC2).")] public sealed class ReplaceBranchManipulation : SymbolicExpressionTreeManipulator { [StorableConstructor] private ReplaceBranchManipulation(bool deserializing) : base(deserializing) { } private ReplaceBranchManipulation(ReplaceBranchManipulation original, Cloner cloner) : base(original, cloner) { } public ReplaceBranchManipulation() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new ReplaceBranchManipulation(this, cloner); } protected override void Manipulate(IRandom random, SymbolicExpressionTree symbolicExpressionTree, ISymbolicExpressionGrammar grammar, IntValue maxTreeSize, IntValue maxTreeHeight, out bool success) { ReplaceRandomBranch(random, symbolicExpressionTree, grammar, maxTreeSize.Value, maxTreeHeight.Value, out success); } public static void ReplaceRandomBranch(IRandom random, SymbolicExpressionTree symbolicExpressionTree, ISymbolicExpressionGrammar grammar, int maxTreeSize, int maxTreeHeight, out bool success) { success = false; // select any node as parent (except the root node) var manipulationPoint = (from parent in symbolicExpressionTree.Root.IterateNodesPrefix().Skip(1) from subtree in parent.SubTrees select new { Parent = parent, Node = subtree, Index = parent.SubTrees.IndexOf(subtree) }).SelectRandom(random); int maxSize = maxTreeSize - symbolicExpressionTree.Size + manipulationPoint.Node.GetSize(); int maxHeight = maxTreeHeight - symbolicExpressionTree.Height + manipulationPoint.Node.GetHeight(); // find possible symbols for the node (also considering the existing branches below it) var allowedSymbols = from symbol in manipulationPoint.Parent.GetAllowedSymbols(manipulationPoint.Index) where manipulationPoint.Node.Grammar.GetMinExpressionDepth(symbol) <= maxHeight where manipulationPoint.Node.Grammar.GetMinExpressionLength(symbol) <= maxSize select symbol; if (allowedSymbols.Count() <= 1) return; var seedSymbol = SelectRandomSymbol(random, allowedSymbols); // replace the old node with the new node var seedNode = seedSymbol.CreateTreeNode(); if (seedNode.HasLocalParameters) seedNode.ResetLocalParameters(random); manipulationPoint.Parent.RemoveSubTree(manipulationPoint.Index); manipulationPoint.Parent.InsertSubTree(manipulationPoint.Index, seedNode); seedNode = ProbabilisticTreeCreator.PTC2(random, seedNode, maxSize, maxHeight, 0, 0); success = true; } private static Symbol SelectRandomSymbol(IRandom random, IEnumerable symbols) { var symbolList = symbols.ToList(); var ticketsSum = symbolList.Select(x => x.InitialFrequency).Sum(); if (ticketsSum == 0.0) throw new ArgumentException("The initial frequency of all allowed symbols is zero."); var r = random.NextDouble() * ticketsSum; double aggregatedTickets = 0; for (int i = 0; i < symbolList.Count; i++) { aggregatedTickets += symbolList[i].InitialFrequency; if (aggregatedTickets > r) { return symbolList[i]; } } // this should never happen throw new ArgumentException("There is a problem with the initial frequency setting of allowed symbols."); } } }