#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Crossovers { /// /// Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1. /// And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated. /// When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1 /// until a valid configuration is found. /// [Item("SubtreeCrossover", "An operator which performs subtree swapping crossover.")] [StorableClass] public class SubtreeCrossover : SymbolicExpressionTreeCrossover { public IValueLookupParameter InternalCrossoverPointProbabilityParameter { get { return (IValueLookupParameter)Parameters["InternalCrossoverPointProbability"]; } } public SubtreeCrossover() : base() { Parameters.Add(new ValueLookupParameter("InternalCrossoverPointProbability", "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9))); } protected override SymbolicExpressionTree Cross(IRandom random, SymbolicExpressionTree parent0, SymbolicExpressionTree parent1, IntValue maxTreeSize, IntValue maxTreeHeight, out bool success) { return Cross(random, parent0, parent1, InternalCrossoverPointProbabilityParameter.ActualValue.Value, maxTreeSize.Value, maxTreeHeight.Value, out success); } public static SymbolicExpressionTree Cross(IRandom random, SymbolicExpressionTree parent0, SymbolicExpressionTree parent1, double internalCrossoverPointProbability, int maxTreeSize, int maxTreeHeight, out bool success) { // select a random crossover point in the first parent SymbolicExpressionTreeNode crossoverPoint0; int replacedSubtreeIndex; SelectCrossoverPoint(random, parent0, internalCrossoverPointProbability, maxTreeSize - 1, maxTreeHeight - 1, out crossoverPoint0, out replacedSubtreeIndex); // calculate the max size and height that the inserted branch can have int maxInsertedBranchSize = maxTreeSize - (parent0.Size - crossoverPoint0.SubTrees[replacedSubtreeIndex].GetSize()); int maxInsertedBranchHeight = maxTreeHeight - GetBranchLevel(parent0.Root, crossoverPoint0); List allowedBranches = new List(); parent1.Root.ForEachNodePostfix((n) => { if (n.GetSize() < maxInsertedBranchSize && n.GetHeight() < maxInsertedBranchHeight && IsMatchingPointType(crossoverPoint0, replacedSubtreeIndex, n)) allowedBranches.Add(n); }); if (allowedBranches.Count == 0) { success = false; return parent0; } else { var selectedBranch = SelectRandomBranch(random, allowedBranches, internalCrossoverPointProbability); // manipulate the tree of parent0 in place // replace the branch in tree0 with the selected branch from tree1 crossoverPoint0.RemoveSubTree(replacedSubtreeIndex); crossoverPoint0.InsertSubTree(replacedSubtreeIndex, selectedBranch); success = true; return parent0; } } private static bool IsMatchingPointType(SymbolicExpressionTreeNode parent, int replacedSubtreeIndex, SymbolicExpressionTreeNode branch) { // check syntax constraints of direct parent - child relation if (!parent.Grammar.ContainsSymbol(branch.Symbol) || !parent.Grammar.IsAllowedChild(parent.Symbol, branch.Symbol, replacedSubtreeIndex)) return false; bool result = true; // check point type for the whole branch branch.ForEachNodePostfix((n) => { result = result && parent.Grammar.ContainsSymbol(n.Symbol) && n.SubTrees.Count >= parent.Grammar.GetMinSubtreeCount(n.Symbol) && n.SubTrees.Count <= parent.Grammar.GetMaxSubtreeCount(n.Symbol); }); return result; } private static void SelectCrossoverPoint(IRandom random, SymbolicExpressionTree parent0, double internalNodeProbability, int maxBranchSize, int maxBranchHeight, out SymbolicExpressionTreeNode crossoverPoint, out int subtreeIndex) { if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability"); List internalCrossoverPoints = new List(); List leafCrossoverPoints = new List(); parent0.Root.ForEachNodePostfix((n) => { if (n.SubTrees.Count > 0 && n.GetSize() < maxBranchSize && n.GetHeight() < maxBranchHeight && n != parent0.Root ) { foreach (var child in n.SubTrees) { if (child.SubTrees.Count > 0) internalCrossoverPoints.Add(new CrossoverPoint(n, child)); else leafCrossoverPoints.Add(new CrossoverPoint(n, child)); } } }); if (random.NextDouble() < internalNodeProbability) { // select from internal node if possible if (internalCrossoverPoints.Count > 0) { // select internal crossover point or leaf var selectedCrossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)]; crossoverPoint = selectedCrossoverPoint.Parent; subtreeIndex = selectedCrossoverPoint.SubtreeIndex; } else { // otherwise select external node var selectedCrossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)]; crossoverPoint = selectedCrossoverPoint.Parent; subtreeIndex = selectedCrossoverPoint.SubtreeIndex; } } else if (leafCrossoverPoints.Count > 0) { // select from leaf crossover point if possible var selectedCrossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)]; crossoverPoint = selectedCrossoverPoint.Parent; subtreeIndex = selectedCrossoverPoint.SubtreeIndex; } else { // otherwise select internal crossover point var selectedCrossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)]; crossoverPoint = selectedCrossoverPoint.Parent; subtreeIndex = selectedCrossoverPoint.SubtreeIndex; } } private static SymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IEnumerable branches, double internalNodeProbability) { if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability"); List allowedInternalBranches; List allowedLeafBranches; if (random.NextDouble() < internalNodeProbability) { // select internal node if possible allowedInternalBranches = (from branch in branches where branch.SubTrees.Count > 0 select branch).ToList(); if (allowedInternalBranches.Count > 0) { return allowedInternalBranches.SelectRandom(random); } else { // no internal nodes allowed => select leaf nodes allowedLeafBranches = (from branch in branches where branch.SubTrees.Count == 0 select branch).ToList(); return allowedLeafBranches.SelectRandom(random); } } else { // select leaf node if possible allowedLeafBranches = (from branch in branches where branch.SubTrees.Count == 0 select branch).ToList(); if (allowedLeafBranches.Count > 0) { return allowedLeafBranches.SelectRandom(random); } else { allowedInternalBranches = (from branch in branches where branch.SubTrees.Count > 0 select branch).ToList(); return allowedInternalBranches.SelectRandom(random); } } } private static int GetBranchLevel(SymbolicExpressionTreeNode root, SymbolicExpressionTreeNode point) { if (root == point) return 0; foreach (var subtree in root.SubTrees) { int branchLevel = GetBranchLevel(subtree, point); if (branchLevel < int.MaxValue) return 1 + branchLevel; } return int.MaxValue; } } }