#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Encodings.LinearLinkageEncoding {
[Item("Lowest Index Max Crossover", "The Lowest Index Max Crossover (LIMX) is implemented as described in Ülker, Ö., Özcan, E., Korkmaz, E. E. 2007. Linear linkage encoding in grouping problems: applications on graph coloring and timetabling. In Practice and Theory of Automated Timetabling VI, pp. 347-363. Springer Berlin Heidelberg.")]
[StorableClass]
public sealed class LowestIndexMaxCrossover : LinearLinkageCrossover {
[StorableConstructor]
private LowestIndexMaxCrossover(bool deserializing) : base(deserializing) { }
private LowestIndexMaxCrossover(LowestIndexMaxCrossover original, Cloner cloner) : base(original, cloner) { }
public LowestIndexMaxCrossover() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new LowestIndexMaxCrossover(this, cloner);
}
public static LinearLinkage Apply(IRandom random, ItemArray parents) {
var len = parents[0].Length;
var child = LinearLinkage.SingleElementGroups(len);
var remaining = new SortedSet(Enumerable.Range(0, len));
do {
var groups = parents.Select(x => x.GetGroupForward(remaining.Min).Where(y => remaining.Contains(y)).ToList()).ToList();
var max = groups.Select((v, idx) => Tuple.Create(idx, v.Count)).MaxItems(x => x.Item2).SampleRandom(random).Item1;
var i = groups[max][0];
for (var k = 1; k < groups[max].Count; k++) {
child[i] = groups[max][k];
remaining.Remove(i);
i = child[i];
}
child[i] = i;
remaining.Remove(i);
} while (remaining.Count > 0);
return child;
}
protected override LinearLinkage Cross(IRandom random, ItemArray parents) {
return Apply(random, parents);
}
}
}