#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.DataPreprocessing.Interfaces;
namespace HeuristicLab.DataPreprocessing {
[Item("Histogram", "Represents the histogram grid.")]
public class HistogramContent : PreprocessingChartContent {
public static new Image StaticItemImage {
get { return HeuristicLab.Common.Resources.VSImageLibrary.Statistics; }
}
private const int MAX_DISTINCT_VALUES_FOR_CLASSIFCATION = 20;
private int classifierVariableIndex = 0;
public int ClassifierVariableIndex {
get { return this.classifierVariableIndex; }
set { this.classifierVariableIndex = value; }
}
public HistogramContent(IFilteredPreprocessingData preprocessingData)
: base(preprocessingData) {
AllInOneMode = false;
}
public HistogramContent(HistogramContent content, Cloner cloner)
: base(content, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new HistogramContent(this, cloner);
}
public IEnumerable GetVariableNamesForHistogramClassification() {
List doubleVariableNames = new List();
//only return variable names from type double
for (int i = 0; i < PreprocessingData.Columns; ++i) {
if (PreprocessingData.VariableHasType(i)) {
double distinctValueCount = PreprocessingData.GetValues(i).GroupBy(x => x).Count();
bool distinctValuesOk = distinctValueCount <= MAX_DISTINCT_VALUES_FOR_CLASSIFCATION;
if (distinctValuesOk)
doubleVariableNames.Add(PreprocessingData.GetVariableName(i));
}
}
return doubleVariableNames;
}
}
}