#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Xml; using HeuristicLab.Core; using HeuristicLab.Data; using System.Globalization; using System.Text; namespace HeuristicLab.DataAnalysis { public sealed class Dataset : ItemBase { private string name; private double[] samples; private int rows; private int columns; private Dictionary>[] cachedMeans; private Dictionary>[] cachedRanges; private double[] scalingFactor; private double[] scalingOffset; public string Name { get { return name; } set { name = value; } } public int Rows { get { return rows; } set { rows = value; } } public int Columns { get { return columns; } set { columns = value; } } public double[] ScalingFactor { get { return scalingFactor; } } public double[] ScalingOffset { get { return scalingOffset; } } public double GetValue(int i, int j) { return samples[columns * i + j]; } public void SetValue(int i, int j, double v) { if(v != samples[columns * i + j]) { samples[columns * i + j] = v; CreateDictionaries(); FireChanged(); } } public double[] Samples { get { return samples; } set { scalingFactor = new double[columns]; scalingOffset = new double[columns]; for(int i = 0; i < scalingFactor.Length; i++) { scalingFactor[i] = 1.0; scalingOffset[i] = 0.0; } samples = value; CreateDictionaries(); FireChanged(); } } private string[] variableNames; public string[] VariableNames { get { return variableNames; } set { variableNames = value; } } public Dataset() { Name = "-"; VariableNames = new string[] { "Var0" }; Columns = 1; Rows = 1; Samples = new double[1]; scalingOffset = new double[] { 0.0 }; scalingFactor = new double[] { 1.0 }; } private void CreateDictionaries() { // keep a means and ranges dictionary for each column (possible target variable) of the dataset. cachedMeans = new Dictionary>[columns]; cachedRanges = new Dictionary>[columns]; for(int i = 0; i < columns; i++) { cachedMeans[i] = new Dictionary>(); cachedRanges[i] = new Dictionary>(); } } public override IView CreateView() { return new DatasetView(this); } public override object Clone(IDictionary clonedObjects) { Dataset clone = new Dataset(); clonedObjects.Add(Guid, clone); double[] cloneSamples = new double[rows * columns]; Array.Copy(samples, cloneSamples, samples.Length); clone.rows = rows; clone.columns = columns; clone.Samples = cloneSamples; clone.Name = Name; clone.VariableNames = new string[VariableNames.Length]; Array.Copy(VariableNames, clone.VariableNames, VariableNames.Length); Array.Copy(scalingFactor, clone.scalingFactor, columns); Array.Copy(scalingOffset, clone.scalingOffset, columns); return clone; } public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary persistedObjects) { XmlNode node = base.GetXmlNode(name, document, persistedObjects); XmlAttribute problemName = document.CreateAttribute("Name"); problemName.Value = Name; node.Attributes.Append(problemName); XmlAttribute dim1 = document.CreateAttribute("Dimension1"); dim1.Value = rows.ToString(CultureInfo.InvariantCulture.NumberFormat); node.Attributes.Append(dim1); XmlAttribute dim2 = document.CreateAttribute("Dimension2"); dim2.Value = columns.ToString(CultureInfo.InvariantCulture.NumberFormat); node.Attributes.Append(dim2); XmlAttribute variableNames = document.CreateAttribute("VariableNames"); variableNames.Value = GetVariableNamesString(); node.Attributes.Append(variableNames); XmlAttribute scalingFactorsAttribute = document.CreateAttribute("ScalingFactors"); scalingFactorsAttribute.Value = GetString(scalingFactor); node.Attributes.Append(scalingFactorsAttribute); XmlAttribute scalingOffsetsAttribute = document.CreateAttribute("ScalingOffsets"); scalingOffsetsAttribute.Value = GetString(scalingOffset); node.Attributes.Append(scalingOffsetsAttribute); node.InnerText = ToString(CultureInfo.InvariantCulture.NumberFormat); return node; } public override void Populate(XmlNode node, IDictionary restoredObjects) { base.Populate(node, restoredObjects); Name = node.Attributes["Name"].Value; rows = int.Parse(node.Attributes["Dimension1"].Value, CultureInfo.InvariantCulture.NumberFormat); columns = int.Parse(node.Attributes["Dimension2"].Value, CultureInfo.InvariantCulture.NumberFormat); VariableNames = ParseVariableNamesString(node.Attributes["VariableNames"].Value); if(node.Attributes["ScalingFactors"] != null) scalingFactor = ParseDoubleString(node.Attributes["ScalingFactors"].Value); else { scalingFactor = new double[columns]; // compatibility with old serialization format for(int i = 0; i < scalingFactor.Length; i++) scalingFactor[i] = 1.0; } if(node.Attributes["ScalingOffsets"] != null) scalingOffset = ParseDoubleString(node.Attributes["ScalingOffsets"].Value); else { scalingOffset = new double[columns]; // compatibility with old serialization format for(int i = 0; i < scalingOffset.Length; i++) scalingOffset[i] = 0.0; } string[] tokens = node.InnerText.Split(';'); if(tokens.Length != rows * columns) throw new FormatException(); samples = new double[rows * columns]; for(int row = 0; row < rows; row++) { for(int column = 0; column < columns; column++) { if(double.TryParse(tokens[row * columns + column], NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out samples[row * columns + column]) == false) { throw new FormatException("Can't parse " + tokens[row * columns + column] + " as double value."); } } } CreateDictionaries(); } public override string ToString() { return ToString(CultureInfo.CurrentCulture.NumberFormat); } private string ToString(NumberFormatInfo format) { StringBuilder builder = new StringBuilder(); for(int row = 0; row < rows; row++) { for(int column = 0; column < columns; column++) { builder.Append(";"); builder.Append(samples[row * columns + column].ToString(format)); } } if(builder.Length > 0) builder.Remove(0, 1); return builder.ToString(); } private string GetVariableNamesString() { string s = ""; for(int i = 0; i < variableNames.Length; i++) { s += variableNames[i] + "; "; } if(variableNames.Length > 0) { s = s.TrimEnd(';', ' '); } return s; } private string GetString(double[] xs) { string s = ""; for(int i = 0; i < xs.Length; i++) { s += xs[i].ToString(CultureInfo.InvariantCulture) + "; "; } if(xs.Length > 0) { s = s.TrimEnd(';', ' '); } return s; } private string[] ParseVariableNamesString(string p) { p = p.Trim(); string[] tokens = p.Split(new char[] { ';' }, StringSplitOptions.RemoveEmptyEntries); return tokens; } private double[] ParseDoubleString(string s) { s = s.Trim(); string[] ss = s.Split(new char[] { ';' }, StringSplitOptions.RemoveEmptyEntries); double[] xs = new double[ss.Length]; for(int i = 0; i < xs.Length; i++) { xs[i] = double.Parse(ss[i], CultureInfo.InvariantCulture); } return xs; } public double GetMean(int column) { return GetMean(column, 0, Rows - 1); } public double GetMean(int column, int from, int to) { if(!cachedMeans[column].ContainsKey(from) || !cachedMeans[column][from].ContainsKey(to)) { double[] values = new double[to - from + 1]; for(int sample = from; sample <= to; sample++) { values[sample - from] = GetValue(sample, column); } double mean = Statistics.Mean(values); if(!cachedMeans[column].ContainsKey(from)) cachedMeans[column][from] = new Dictionary(); cachedMeans[column][from][to] = mean; return mean; } else { return cachedMeans[column][from][to]; } } public double GetRange(int column) { return GetRange(column, 0, Rows - 1); } public double GetRange(int column, int from, int to) { if(!cachedRanges[column].ContainsKey(from) || !cachedRanges[column][from].ContainsKey(to)) { double[] values = new double[to - from + 1]; for(int sample = from; sample <= to; sample++) { values[sample - from] = GetValue(sample, column); } double range = Statistics.Range(values); if(!cachedRanges[column].ContainsKey(from)) cachedRanges[column][from] = new Dictionary(); cachedRanges[column][from][to] = range; return range; } else { return cachedRanges[column][from][to]; } } public double GetMaximum(int column) { double max = Double.NegativeInfinity; for(int i = 0; i < Rows; i++) { double val = GetValue(i, column); if(val > max) max = val; } return max; } public double GetMinimum(int column) { double min = Double.PositiveInfinity; for(int i = 0; i < Rows; i++) { double val = GetValue(i, column); if(val < min) min = val; } return min; } internal void ScaleVariable(int column) { if(scalingFactor[column] == 1.0 && scalingOffset[column] == 0.0) { double min = GetMinimum(column); double max = GetMaximum(column); double range = max - min; if(range == 0) ScaleVariable(column, 1.0, -min); else ScaleVariable(column, 1.0 / range, -min); } CreateDictionaries(); FireChanged(); } internal void ScaleVariable(int column, double factor, double offset) { scalingFactor[column] = factor; scalingOffset[column] = offset; for(int i = 0; i < Rows; i++) { double origValue = samples[i * columns + column]; samples[i * columns + column] = (origValue + offset) * factor; } CreateDictionaries(); FireChanged(); } internal void UnscaleVariable(int column) { if(scalingFactor[column] != 1.0 || scalingOffset[column]!=0.0) { for(int i = 0; i < rows; i++) { double scaledValue = samples[i * columns + column]; samples[i * columns + column] = scaledValue / scalingFactor[column] - scalingOffset[column]; } scalingFactor[column] = 1.0; scalingOffset[column] = 0.0; } } } }