#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Xml;
using HeuristicLab.Core;
using HeuristicLab.Data;
using System.Globalization;
using System.Text;
namespace HeuristicLab.DataAnalysis {
public class Dataset : ItemBase {
private string name;
public string Name {
get { return name; }
set { name = value; }
}
private double[] samples;
private int rows;
public int Rows {
get { return rows; }
set { rows = value; }
}
private int columns;
public int Columns {
get { return columns; }
set { columns = value; }
}
private Dictionary[] ranges;
private Dictionary[] means;
public double GetValue(int i, int j) {
return samples[columns * i + j];
}
public void SetValue(int i, int j, double v) {
if(v != samples[columns * i + j]) {
samples[columns * i + j] = v;
FireChanged();
}
}
public double[] Samples {
get { return samples; }
set {
samples = value;
CreateDictionaries();
FireChanged();
}
}
private string[] variableNames;
public string[] VariableNames {
get { return variableNames; }
set { variableNames = value; }
}
public Dataset() {
Name = "-";
VariableNames = new string[] {"Var0"};
Columns = 1;
Rows = 1;
Samples = new double[1];
}
void samples_Changed(object sender, EventArgs e) {
CreateDictionaries();
}
private void CreateDictionaries() {
// keep a means and ranges dictionary for each column (possible target variable) of the dataset.
means = new Dictionary[columns];
ranges = new Dictionary[columns];
for(int i = 0; i < columns; i++) {
means[i] = new Dictionary();
ranges[i] = new Dictionary();
}
}
public override IView CreateView() {
return new DatasetView(this);
}
public override object Clone(IDictionary clonedObjects) {
Dataset clone = new Dataset();
clonedObjects.Add(Guid, clone);
double[] cloneSamples = new double[rows * columns];
Array.Copy(samples, cloneSamples, samples.Length);
clone.rows = rows;
clone.columns = columns;
clone.Samples = cloneSamples;
clone.Name = Name;
clone.VariableNames = new string[VariableNames.Length];
Array.Copy(VariableNames, clone.VariableNames, VariableNames.Length);
return clone;
}
public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary persistedObjects) {
XmlNode node = base.GetXmlNode(name, document, persistedObjects);
XmlAttribute problemName = document.CreateAttribute("Name");
problemName.Value = Name;
node.Attributes.Append(problemName);
XmlAttribute dim1 = document.CreateAttribute("Dimension1");
dim1.Value = rows.ToString(CultureInfo.InvariantCulture.NumberFormat);
node.Attributes.Append(dim1);
XmlAttribute dim2 = document.CreateAttribute("Dimension2");
dim2.Value = columns.ToString(CultureInfo.InvariantCulture.NumberFormat);
node.Attributes.Append(dim2);
XmlAttribute variableNames = document.CreateAttribute("VariableNames");
variableNames.Value = GetVariableNamesString();
node.Attributes.Append(variableNames);
node.InnerText = ToString(CultureInfo.InvariantCulture.NumberFormat);
return node;
}
public override void Populate(XmlNode node, IDictionary restoredObjects) {
base.Populate(node, restoredObjects);
Name = node.Attributes["Name"].Value;
rows = int.Parse(node.Attributes["Dimension1"].Value, CultureInfo.InvariantCulture.NumberFormat);
columns = int.Parse(node.Attributes["Dimension2"].Value, CultureInfo.InvariantCulture.NumberFormat);
VariableNames = ParseVariableNamesString(node.Attributes["VariableNames"].Value);
string[] tokens = node.InnerText.Split(';');
if(tokens.Length != rows * columns) throw new FormatException();
samples = new double[rows * columns];
for(int row = 0; row < rows; row++) {
for(int column = 0; column < columns; column++) {
if(double.TryParse(tokens[row * columns + column], NumberStyles.Float, CultureInfo.InvariantCulture.NumberFormat, out samples[row*columns + column]) == false) {
throw new FormatException("Can't parse " + tokens[row * columns + column] + " as double value.");
}
}
}
CreateDictionaries();
}
public override string ToString() {
return ToString(CultureInfo.CurrentCulture.NumberFormat);
}
private string ToString(NumberFormatInfo format) {
StringBuilder builder = new StringBuilder();
for(int row = 0; row < rows; row++) {
for(int column = 0; column < columns; column++) {
builder.Append(";");
builder.Append(samples[row*columns+column].ToString(format));
}
}
if(builder.Length > 0) builder.Remove(0, 1);
return builder.ToString();
}
private string GetVariableNamesString() {
string s = "";
for (int i = 0; i < variableNames.Length; i++) {
s += variableNames[i] + "; ";
}
if (variableNames.Length > 0) {
s = s.TrimEnd(';', ' ');
}
return s;
}
private string[] ParseVariableNamesString(string p) {
p = p.Trim();
string[] tokens = p.Split(new char[] {';'}, StringSplitOptions.RemoveEmptyEntries);
return tokens;
}
public double GetMean(int column) {
return GetMean(column, 0, Rows-1);
}
// return value of GetMean should be memoized because it is called repeatedly in Evaluators
public double GetMean(int column, int from, int to) {
Dictionary columnMeans = means[column];
if(columnMeans.ContainsKey(from)) {
double[] fromMeans = columnMeans[from];
if(fromMeans[to-from] >= 0.0) {
// already calculated
return fromMeans[to-from];
} else {
// not yet calculated => calculate
fromMeans[to-from] = CalculateMean(column, from, to);
return fromMeans[to-from];
}
} else {
// never saw this from-index => create a new array, initialize and recalculate for to-index
double[] fromMeans = new double[rows - from];
// fill with negative values to indicate which means have already been calculated
for(int i=0;i columnRanges = ranges[column];
if(columnRanges.ContainsKey(from)) {
double[] fromRanges = columnRanges[from];
if(fromRanges[to-from] >= 0.0) {
// already calculated
return fromRanges[to-from];
} else {
// not yet calculated => calculate
fromRanges[to-from] = CalculateRange(column, from, to);
return fromRanges[to-from];
}
} else {
// never saw this from-index => create a new array, initialize and recalculate for to-index
double[] fromRanges = new double[rows - from];
// fill with negative values to indicate which means have already been calculated
for(int i = 0; i < fromRanges.Length; i++) { fromRanges[i] = -1.0; }
// store in dictionary
columnRanges[from] = fromRanges;
// calculate for specific to-index
fromRanges[to-from] = CalculateRange(column, from, to);
return fromRanges[to-from];
}
}
private double CalculateRange(int column, int from, int to) {
double[] values = new double[to - from + 1];
for(int sample = from; sample <= to; sample++) {
values[sample - from] = GetValue(sample, column);
}
return Statistics.Range(values);
}
}
}