#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Windows.Forms;
using HeuristicLab.PluginInfrastructure;
using System.Net;
using System.ServiceModel;
using HeuristicLab.CEDMA.DB.Interfaces;
using HeuristicLab.CEDMA.DB;
using System.ServiceModel.Description;
using System.Linq;
using HeuristicLab.CEDMA.Core;
using HeuristicLab.GP.StructureIdentification;
using HeuristicLab.Data;
using HeuristicLab.Core;
namespace HeuristicLab.CEDMA.Server {
public abstract class DispatcherBase : IDispatcher {
public enum ModelComplexity { Low, Medium, High };
public enum Algorithm { StandardGpRegression, OffspringGpRegression, StandardGpClassification, OffspringGpClassification, StandardGpForecasting, OffspringGpForecasting };
private IStore store;
private ModelComplexity[] possibleComplexities = new ModelComplexity[] { ModelComplexity.Low, ModelComplexity.Medium, ModelComplexity.High };
private Dictionary possibleAlgorithms = new Dictionary() {
{LearningTask.Classification, new Algorithm[] { Algorithm.StandardGpClassification, Algorithm.OffspringGpClassification }},
{LearningTask.Regression, new Algorithm[] { Algorithm.StandardGpRegression, Algorithm.OffspringGpRegression }},
{LearningTask.TimeSeries, new Algorithm[] { Algorithm.StandardGpForecasting, Algorithm.OffspringGpForecasting }}
};
private static int MaxGenerations {
get { return 3; }
}
private static int MaxEvaluatedSolutions {
get { return 3000; }
}
public DispatcherBase(IStore store) {
this.store = store;
}
public Execution GetNextJob() {
// find and select a dataset
var dataSetVar = new HeuristicLab.CEDMA.DB.Interfaces.Variable("DataSet");
var dataSetQuery = new Statement[] {
new Statement(dataSetVar, Ontology.PredicateInstanceOf, Ontology.TypeDataSet)
};
Entity[] datasets = store.Query("?DataSet <" + Ontology.PredicateInstanceOf.Uri + "> <" + Ontology.TypeDataSet.Uri + "> .")
.Select(x => (Entity)x.Get("DataSet"))
.ToArray();
// no datasets => do nothing
if (datasets.Length == 0) return null;
Entity dataSetEntity = SelectDataSet(datasets);
DataSet dataSet = new DataSet(store, dataSetEntity);
int targetVariable = SelectTargetVariable(dataSet, dataSet.Problem.AllowedTargetVariables.ToArray());
Algorithm selectedAlgorithm = SelectAlgorithm(dataSet, targetVariable, possibleAlgorithms[dataSet.Problem.LearningTask]);
string targetVariableName = dataSet.Problem.GetVariableName(targetVariable);
ModelComplexity selectedComplexity = SelectComplexity(dataSet, targetVariable, selectedAlgorithm, possibleComplexities);
Execution exec = CreateExecution(dataSet.Problem, targetVariable, selectedAlgorithm, selectedComplexity);
if (exec != null) {
exec.DataSetEntity = dataSetEntity;
exec.TargetVariable = targetVariableName;
}
return exec;
}
public abstract Entity SelectDataSet(Entity[] datasets);
public abstract int SelectTargetVariable(DataSet dataSet, int[] targetVariables);
public abstract Algorithm SelectAlgorithm(DataSet dataSet, int targetVariable, Algorithm[] possibleAlgorithms);
public abstract ModelComplexity SelectComplexity(DataSet dataSet, int targetVariable, Algorithm algorithm, ModelComplexity[] possibleComplexities);
private Execution CreateExecution(Problem problem, int targetVariable, Algorithm algorithm, ModelComplexity complexity) {
switch (algorithm) {
case Algorithm.StandardGpRegression: {
var algo = new HeuristicLab.GP.StructureIdentification.StandardGP();
SetComplexityParameters(algo, complexity);
SetProblemParameters(algo, problem, targetVariable);
algo.PopulationSize = 10000;
algo.MaxGenerations = MaxGenerations;
Execution exec = new Execution(algo.Engine);
exec.Description = "StandardGP - Complexity: " + complexity;
return exec;
}
case Algorithm.OffspringGpRegression: {
var algo = new HeuristicLab.GP.StructureIdentification.OffspringSelectionGP();
SetComplexityParameters(algo, complexity);
SetProblemParameters(algo, problem, targetVariable);
algo.MaxEvaluatedSolutions = MaxEvaluatedSolutions;
Execution exec = new Execution(algo.Engine);
exec.Description = "OffspringGP - Complexity: " + complexity;
return exec;
}
case Algorithm.StandardGpClassification: {
var algo = new HeuristicLab.GP.StructureIdentification.Classification.StandardGP();
SetComplexityParameters(algo, complexity);
SetProblemParameters(algo, problem, targetVariable);
algo.PopulationSize = 10000;
algo.MaxGenerations = MaxGenerations;
Execution exec = new Execution(algo.Engine);
exec.Description = "StandardGP - Complexity: " + complexity;
return exec;
}
case Algorithm.OffspringGpClassification: {
var algo = new HeuristicLab.GP.StructureIdentification.Classification.OffspringSelectionGP();
SetComplexityParameters(algo, complexity);
SetProblemParameters(algo, problem, targetVariable);
algo.MaxEvaluatedSolutions = MaxEvaluatedSolutions;
Execution exec = new Execution(algo.Engine);
exec.Description = "OffspringGP - Complexity: " + complexity;
return exec;
}
case Algorithm.StandardGpForecasting: {
var algo = new HeuristicLab.GP.StructureIdentification.TimeSeries.StandardGP();
SetComplexityParameters(algo, complexity);
SetProblemParameters(algo, problem, targetVariable);
algo.PopulationSize = 10000;
algo.MaxGenerations = MaxGenerations;
Execution exec = new Execution(algo.Engine);
exec.Description = "StandardGP - Complexity: " + complexity;
return exec;
}
case Algorithm.OffspringGpForecasting: {
var algo = new HeuristicLab.GP.StructureIdentification.TimeSeries.OffspringSelectionGP();
SetComplexityParameters(algo, complexity);
SetProblemParameters(algo, problem, targetVariable);
algo.MaxEvaluatedSolutions = MaxEvaluatedSolutions;
Execution exec = new Execution(algo.Engine);
exec.Description = "OffspringGP - Complexity: " + complexity;
return exec;
}
default: {
return null;
}
}
}
private void SetComplexityParameters(AlgorithmBase algo, ModelComplexity complexity) {
switch (complexity) {
case ModelComplexity.Low: {
algo.MaxTreeHeight = 5;
algo.MaxTreeSize = 20;
break;
}
case ModelComplexity.Medium: {
algo.MaxTreeHeight = 10;
algo.MaxTreeSize = 100;
break;
}
case ModelComplexity.High: {
algo.MaxTreeHeight = 12;
algo.MaxTreeSize = 200;
break;
}
}
}
private void SetProblemParameters(AlgorithmBase algo, Problem problem, int targetVariable) {
algo.ProblemInjector.GetVariable("Dataset").Value = problem.DataSet;
algo.ProblemInjector.GetVariable("TargetVariable").GetValue().Data = targetVariable;
algo.ProblemInjector.GetVariable("TrainingSamplesStart").GetValue().Data = problem.TrainingSamplesStart;
algo.ProblemInjector.GetVariable("TrainingSamplesEnd").GetValue().Data = problem.TrainingSamplesEnd;
algo.ProblemInjector.GetVariable("ValidationSamplesStart").GetValue().Data = problem.ValidationSamplesStart;
algo.ProblemInjector.GetVariable("ValidationSamplesEnd").GetValue().Data = problem.ValidationSamplesEnd;
algo.ProblemInjector.GetVariable("TestSamplesStart").GetValue().Data = problem.TestSamplesStart;
algo.ProblemInjector.GetVariable("TestSamplesEnd").GetValue().Data = problem.TestSamplesEnd;
ItemList allowedFeatures = algo.ProblemInjector.GetVariable("AllowedFeatures").GetValue>();
foreach (int allowedFeature in problem.AllowedInputVariables) allowedFeatures.Add(new IntData(allowedFeature));
if (problem.LearningTask == LearningTask.TimeSeries) {
algo.ProblemInjector.GetVariable("Autoregressive").GetValue().Data = problem.AutoRegressive;
algo.ProblemInjector.GetVariable("MinTimeOffset").GetValue().Data = problem.MinTimeOffset;
algo.ProblemInjector.GetVariable("MaxTimeOffset").GetValue().Data = problem.MaxTimeOffset;
} else if (problem.LearningTask == LearningTask.Classification) {
ItemList classValues = algo.ProblemInjector.GetVariable("TargetClassValues").GetValue>();
foreach (double classValue in GetDifferentClassValues(problem.DataSet, targetVariable)) classValues.Add(new DoubleData(classValue));
}
}
private IEnumerable GetDifferentClassValues(HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable) {
return Enumerable.Range(0, dataset.Rows).Select(x => dataset.GetValue(x, targetVariable)).Distinct();
}
}
}