#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using System.Windows.Forms; using HeuristicLab.PluginInfrastructure; using System.Net; using System.ServiceModel; using System.ServiceModel.Description; using System.Linq; using HeuristicLab.CEDMA.Core; using HeuristicLab.Data; using HeuristicLab.Core; using HeuristicLab.Modeling; using HeuristicLab.Modeling.Database; namespace HeuristicLab.CEDMA.Server { public class SimpleDispatcher : DispatcherBase { private class AlgorithmConfiguration { public string name; public int targetVariable; public List inputVariables; } private Random random; private Dictionary> finishedAndDispatchedRuns; public SimpleDispatcher(IModelingDatabase database, Problem problem) : base(database, problem) { random = new Random(); finishedAndDispatchedRuns = new Dictionary>(); PopulateFinishedRuns(); } public override HeuristicLab.Modeling.IAlgorithm SelectAndConfigureAlgorithm(int targetVariable, int[] inputVariables, Problem problem) { DiscoveryService ds = new DiscoveryService(); HeuristicLab.Modeling.IAlgorithm[] algos = ds.GetInstances(); HeuristicLab.Modeling.IAlgorithm selectedAlgorithm = null; switch (problem.LearningTask) { case LearningTask.Regression: { var regressionAlgos = algos.Where(a => (a as IClassificationAlgorithm) == null && (a as ITimeSeriesAlgorithm) == null); selectedAlgorithm = ChooseDeterministic(targetVariable, inputVariables, regressionAlgos) ?? ChooseStochastic(regressionAlgos); break; } case LearningTask.Classification: { var classificationAlgos = algos.Where(a => (a as IClassificationAlgorithm) != null); selectedAlgorithm = ChooseDeterministic(targetVariable, inputVariables, classificationAlgos) ?? ChooseStochastic(classificationAlgos); break; } case LearningTask.TimeSeries: { var timeSeriesAlgos = algos.Where(a => (a as ITimeSeriesAlgorithm) != null); selectedAlgorithm = ChooseDeterministic(targetVariable, inputVariables, timeSeriesAlgos) ?? ChooseStochastic(timeSeriesAlgos); break; } } if (selectedAlgorithm != null) { SetProblemParameters(selectedAlgorithm, problem, targetVariable, inputVariables); AddDispatchedRun(targetVariable, inputVariables, selectedAlgorithm.Name); } return selectedAlgorithm; } private HeuristicLab.Modeling.IAlgorithm ChooseDeterministic(int targetVariable, int[] inputVariables, IEnumerable algos) { var deterministicAlgos = algos .Where(a => (a as IStochasticAlgorithm) == null) .Where(a => AlgorithmFinishedOrDispatched(targetVariable, inputVariables, a.Name) == false); if (deterministicAlgos.Count() == 0) return null; return deterministicAlgos.ElementAt(random.Next(deterministicAlgos.Count())); } private HeuristicLab.Modeling.IAlgorithm ChooseStochastic(IEnumerable regressionAlgos) { var stochasticAlgos = regressionAlgos.Where(a => (a as IStochasticAlgorithm) != null); if (stochasticAlgos.Count() == 0) return null; return stochasticAlgos.ElementAt(random.Next(stochasticAlgos.Count())); } private void PopulateFinishedRuns() { //Dictionary processedModels = new Dictionary(); //var datasetBindings = store // .Query( // "?Dataset <" + Ontology.InstanceOf + "> <" + Ontology.TypeDataSet + "> .", 0, 1) // .Select(x => (Entity)x.Get("Dataset")); //if (datasetBindings.Count() > 0) { // var datasetEntity = datasetBindings.ElementAt(0); // DataSet ds = new DataSet(store, datasetEntity); // var result = store // .Query( // "?Model <" + Ontology.TargetVariable + "> ?TargetVariable ." + Environment.NewLine + // "?Model <" + Ontology.Name + "> ?AlgoName .", // 0, 1000) // .Select(x => new Resource[] { (Literal)x.Get("TargetVariable"), (Literal)x.Get("AlgoName"), (Entity)x.Get("Model") }); // foreach (Resource[] row in result) { // Entity model = ((Entity)row[2]); // if (!processedModels.ContainsKey(model)) { // processedModels.Add(model, model); // string targetVariable = (string)((Literal)row[0]).Value; // string algoName = (string)((Literal)row[1]).Value; // int targetVariableIndex = ds.Problem.Dataset.GetVariableIndex(targetVariable); // var inputVariableLiterals = store // .Query( // "<" + model.Uri + "> <" + Ontology.HasInputVariable + "> ?InputVariable ." + Environment.NewLine + // "?InputVariable <" + Ontology.Name + "> ?Name .", // 0, 1000) // .Select(x => (Literal)x.Get("Name")) // .Select(l => (string)l.Value) // .Distinct(); // List inputVariables = new List(); // foreach (string variableName in inputVariableLiterals) { // int variableIndex = ds.Problem.Dataset.GetVariableIndex(variableName); // inputVariables.Add(variableIndex); // } // if (!AlgorithmFinishedOrDispatched(targetVariableIndex, inputVariables.ToArray(), algoName)) { // AddDispatchedRun(targetVariableIndex, inputVariables.ToArray(), algoName); // } // } // } //} } private void SetProblemParameters(HeuristicLab.Modeling.IAlgorithm algo, Problem problem, int targetVariable, int[] inputVariables) { algo.Dataset = problem.Dataset; algo.TargetVariable = targetVariable; algo.ProblemInjector.GetVariable("TrainingSamplesStart").GetValue().Data = problem.TrainingSamplesStart; algo.ProblemInjector.GetVariable("TrainingSamplesEnd").GetValue().Data = problem.TrainingSamplesEnd; algo.ProblemInjector.GetVariable("ValidationSamplesStart").GetValue().Data = problem.ValidationSamplesStart; algo.ProblemInjector.GetVariable("ValidationSamplesEnd").GetValue().Data = problem.ValidationSamplesEnd; algo.ProblemInjector.GetVariable("TestSamplesStart").GetValue().Data = problem.TestSamplesStart; algo.ProblemInjector.GetVariable("TestSamplesEnd").GetValue().Data = problem.TestSamplesEnd; ItemList allowedFeatures = algo.ProblemInjector.GetVariable("AllowedFeatures").GetValue>(); foreach (int inputVariable in inputVariables) { if (inputVariable != targetVariable) { allowedFeatures.Add(new IntData(inputVariable)); } } if (problem.LearningTask == LearningTask.TimeSeries) { algo.ProblemInjector.GetVariable("Autoregressive").GetValue().Data = problem.AutoRegressive; algo.ProblemInjector.GetVariable("MinTimeOffset").GetValue().Data = problem.MinTimeOffset; algo.ProblemInjector.GetVariable("MaxTimeOffset").GetValue().Data = problem.MaxTimeOffset; if (problem.AutoRegressive) { allowedFeatures.Add(new IntData(targetVariable)); } } else if (problem.LearningTask == LearningTask.Classification) { ItemList classValues = algo.ProblemInjector.GetVariable("TargetClassValues").GetValue>(); foreach (double classValue in GetDifferentClassValues(problem.Dataset, targetVariable)) classValues.Add(new DoubleData(classValue)); } } private IEnumerable GetDifferentClassValues(HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable) { return Enumerable.Range(0, dataset.Rows).Select(x => dataset.GetValue(x, targetVariable)).Distinct(); } private void AddDispatchedRun(int targetVariable, int[] inputVariables, string algoName) { if (!finishedAndDispatchedRuns.ContainsKey(targetVariable)) { finishedAndDispatchedRuns[targetVariable] = new List(); } AlgorithmConfiguration conf = new AlgorithmConfiguration(); conf.name = algoName; conf.inputVariables = new List(inputVariables); conf.targetVariable = targetVariable; finishedAndDispatchedRuns[targetVariable].Add(conf); } private bool AlgorithmFinishedOrDispatched(int targetVariable, int[] inputVariables, string algoName) { return finishedAndDispatchedRuns.ContainsKey(targetVariable) && finishedAndDispatchedRuns[targetVariable].Any(x => targetVariable == x.targetVariable && algoName == x.name && inputVariables.Count() == x.inputVariables.Count() && inputVariables.All(v => x.inputVariables.Contains(v))); } } }