#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using System.Windows.Forms; using HeuristicLab.PluginInfrastructure; using System.Net; using System.ServiceModel; using HeuristicLab.CEDMA.DB.Interfaces; using HeuristicLab.CEDMA.DB; using System.ServiceModel.Description; using System.Linq; using HeuristicLab.CEDMA.Core; using HeuristicLab.GP.StructureIdentification; using HeuristicLab.Data; using HeuristicLab.Grid; using System.Diagnostics; using HeuristicLab.Core; using System.Threading; using HeuristicLab.Modeling; namespace HeuristicLab.CEDMA.Server { public abstract class ExecuterBase : IExecuter { private IDispatcher dispatcher; protected IDispatcher Dispatcher { get { return dispatcher; } } private IStore store; private int maxActiveJobs; public int MaxActiveJobs { get { return maxActiveJobs; } set { if (value < 0) throw new ArgumentException("Only positive values are allowed for MaxActiveJobs"); maxActiveJobs = value; } } public ExecuterBase(IDispatcher dispatcher, IStore store) { maxActiveJobs = 10; this.dispatcher = dispatcher; this.store = store; } public void Start() { new Thread(StartJobs).Start(); } protected abstract void StartJobs(); protected void SetResults(IScope src, IScope target) { foreach (IVariable v in src.Variables) { target.AddVariable(v); } foreach (IScope subScope in src.SubScopes) { target.AddSubScope(subScope); } foreach (KeyValuePair alias in src.Aliases) { target.AddAlias(alias.Key, alias.Value); } } protected void StoreResults(IAlgorithm finishedAlgorithm) { Entity modelEntity = new Entity(Ontology.CedmaNameSpace + Guid.NewGuid()); IModel model = finishedAlgorithm.Model; List statements = new List(); statements.Add(new Statement(modelEntity, Ontology.InstanceOf, Ontology.TypeModel)); statements.Add(new Statement(modelEntity, Ontology.TargetVariable, new Literal(model.TargetVariable))); statements.Add(new Statement(modelEntity, Ontology.Name, new Literal(finishedAlgorithm.Description))); statements.Add(new Statement(modelEntity, Ontology.TrainingMeanSquaredError, new Literal(model.TrainingMeanSquaredError))); statements.Add(new Statement(modelEntity, Ontology.ValidationMeanSquaredError, new Literal(model.ValidationMeanSquaredError))); statements.Add(new Statement(modelEntity, Ontology.TestMeanSquaredError, new Literal(model.TestMeanSquaredError))); statements.Add(new Statement(modelEntity, Ontology.TrainingCoefficientOfDetermination, new Literal(model.TrainingCoefficientOfDetermination))); statements.Add(new Statement(modelEntity, Ontology.ValidationCoefficientOfDetermination, new Literal(model.ValidationCoefficientOfDetermination))); statements.Add(new Statement(modelEntity, Ontology.TestCoefficientOfDetermination, new Literal(model.TestCoefficientOfDetermination))); statements.Add(new Statement(modelEntity, Ontology.TrainingVarianceAccountedFor, new Literal(model.TrainingVarianceAccountedFor))); statements.Add(new Statement(modelEntity, Ontology.ValidationVarianceAccountedFor, new Literal(model.ValidationVarianceAccountedFor))); statements.Add(new Statement(modelEntity, Ontology.TestVarianceAccountedFor, new Literal(model.TestVarianceAccountedFor))); statements.Add(new Statement(modelEntity, Ontology.TrainingMeanAbsolutePercentageError, new Literal(model.TrainingMeanAbsolutePercentageError))); statements.Add(new Statement(modelEntity, Ontology.ValidationMeanAbsolutePercentageError, new Literal(model.ValidationMeanAbsolutePercentageError))); statements.Add(new Statement(modelEntity, Ontology.TestMeanAbsolutePercentageError, new Literal(model.TestMeanAbsolutePercentageError))); statements.Add(new Statement(modelEntity, Ontology.TrainingMeanAbsolutePercentageOfRangeError, new Literal(model.TrainingMeanAbsolutePercentageOfRangeError))); statements.Add(new Statement(modelEntity, Ontology.ValidationMeanAbsolutePercentageOfRangeError, new Literal(model.ValidationMeanAbsolutePercentageOfRangeError))); statements.Add(new Statement(modelEntity, Ontology.TestMeanAbsolutePercentageOfRangeError, new Literal(model.TestMeanAbsolutePercentageOfRangeError))); for (int i = 0; i < finishedAlgorithm.Dataset.Columns; i++) { try { string variableName = finishedAlgorithm.Dataset.GetVariableName(i); double qualImpact = model.GetVariableQualityImpact(variableName); double evalImpact = model.GetVariableEvaluationImpact(variableName); Entity inputVariableEntity = new Entity(Ontology.CedmaNameSpace + Guid.NewGuid()); statements.Add(new Statement(inputVariableEntity, Ontology.InstanceOf, Ontology.TypeVariableImpact)); statements.Add(new Statement(modelEntity, Ontology.HasInputVariable, inputVariableEntity)); statements.Add(new Statement(inputVariableEntity, Ontology.EvaluationImpact, new Literal(evalImpact))); statements.Add(new Statement(inputVariableEntity, Ontology.QualityImpact, new Literal(qualImpact))); statements.Add(new Statement(inputVariableEntity, Ontology.Name, new Literal(variableName))); } catch (ArgumentException) { // ignore } } byte[] serializedModel = PersistenceManager.SaveToGZip(model.Data); statements.Add(new Statement(modelEntity, Ontology.SerializedData, new Literal(Convert.ToBase64String(serializedModel)))); store.AddRange(statements); } public abstract string[] GetJobs(); } }