#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Modeling; using System; using System.Xml; using HeuristicLab.DataAnalysis; namespace HeuristicLab.ArtificialNeuralNetworks { public class Predictor : PredictorBase { private MultiLayerPerceptron perceptron; public Predictor() : base() { } // for persistence public Predictor(MultiLayerPerceptron perceptron, double lowerPredictionLimit, double upperPredictionLimit) : base(lowerPredictionLimit, upperPredictionLimit) { this.perceptron = perceptron; } public override IEnumerable Predict(Dataset input, int start, int end) { if (start < 0 || end <= start) throw new ArgumentException("start must be larger than zero and strictly smaller than end"); if (end > input.Rows) throw new ArgumentOutOfRangeException("number of rows in input is smaller then end"); for (int i = 0; i < end - start; i++) { double[] output = new double[1]; double[] inputRow = new double[input.Columns - 1]; for (int c = 1; c < inputRow.Length; c++) { inputRow[c - 1] = input.GetValue(i + start, c); } alglib.mlpbase.multilayerperceptron p = perceptron.Perceptron; alglib.mlpbase.mlpprocess(ref p, ref inputRow, ref output); perceptron.Perceptron = p; yield return Math.Max(Math.Min(output[0], UpperPredictionLimit), LowerPredictionLimit); } } public override IEnumerable GetInputVariables() { return perceptron.InputVariables; } public override object Clone(IDictionary clonedObjects) { Predictor clone = (Predictor)base.Clone(clonedObjects); clone.perceptron = (MultiLayerPerceptron)Auxiliary.Clone(perceptron, clonedObjects); return clone; } public override System.Xml.XmlNode GetXmlNode(string name, System.Xml.XmlDocument document, IDictionary persistedObjects) { XmlNode node = base.GetXmlNode(name, document, persistedObjects); node.AppendChild(PersistenceManager.Persist("Perceptron", perceptron, document, persistedObjects)); return node; } public override void Populate(System.Xml.XmlNode node, IDictionary restoredObjects) { base.Populate(node, restoredObjects); perceptron = (MultiLayerPerceptron)PersistenceManager.Restore(node.SelectSingleNode("Perceptron"), restoredObjects); } } }