#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Modeling;
using System;
using System.Xml;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.ArtificialNeuralNetworks {
public class Predictor : PredictorBase {
private MultiLayerPerceptron perceptron;
public Predictor() : base() { } // for persistence
public Predictor(MultiLayerPerceptron perceptron, double lowerPredictionLimit, double upperPredictionLimit)
: base(lowerPredictionLimit, upperPredictionLimit) {
this.perceptron = perceptron;
}
public override IEnumerable Predict(Dataset input, int start, int end) {
if (start < 0 || end <= start) throw new ArgumentException("start must be larger than zero and strictly smaller than end");
if (end > input.Rows) throw new ArgumentOutOfRangeException("number of rows in input is smaller then end");
for (int i = 0; i < end - start; i++) {
double[] output = new double[1];
double[] inputRow = new double[input.Columns - 1];
for (int c = 1; c < inputRow.Length; c++) {
inputRow[c - 1] = input.GetValue(i + start, c);
}
alglib.mlpbase.multilayerperceptron p = perceptron.Perceptron;
alglib.mlpbase.mlpprocess(ref p, ref inputRow, ref output);
perceptron.Perceptron = p;
yield return Math.Max(Math.Min(output[0], UpperPredictionLimit), LowerPredictionLimit);
}
}
public override IEnumerable GetInputVariables() {
return perceptron.InputVariables;
}
public override object Clone(IDictionary clonedObjects) {
Predictor clone = (Predictor)base.Clone(clonedObjects);
clone.perceptron = (MultiLayerPerceptron)Auxiliary.Clone(perceptron, clonedObjects);
return clone;
}
public override System.Xml.XmlNode GetXmlNode(string name, System.Xml.XmlDocument document, IDictionary persistedObjects) {
XmlNode node = base.GetXmlNode(name, document, persistedObjects);
node.AppendChild(PersistenceManager.Persist("Perceptron", perceptron, document, persistedObjects));
return node;
}
public override void Populate(System.Xml.XmlNode node, IDictionary restoredObjects) {
base.Populate(node, restoredObjects);
perceptron = (MultiLayerPerceptron)PersistenceManager.Restore(node.SelectSingleNode("Perceptron"), restoredObjects);
}
}
}