#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.DataAnalysis; using HeuristicLab.Modeling; namespace HeuristicLab.ArtificialNeuralNetworks { public class MultiLayerPerceptronRegressionOperator : OperatorBase { public MultiLayerPerceptronRegressionOperator() { AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In)); AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In)); AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("NumberOfHiddenLayerNeurons", "The number of nodes in the hidden layer.", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal time offset for time-series prognosis", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal time offset for time-series prognosis", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MultiLayerPerceptron", "Formula that was calculated by multi layer perceptron regression", typeof(MultiLayerPerceptron), VariableKind.Out | VariableKind.New)); } public override IOperation Apply(IScope scope) { Dataset dataset = GetVariableValue("Dataset", scope, true); string targetVariable = GetVariableValue("TargetVariable", scope, true).Data; int targetVariableIndex = dataset.GetVariableIndex(targetVariable); int start = GetVariableValue("SamplesStart", scope, true).Data; int end = GetVariableValue("SamplesEnd", scope, true).Data; IntData maxTimeOffsetData = GetVariableValue("MaxTimeOffset", scope, true, false); int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data; IntData minTimeOffsetData = GetVariableValue("MinTimeOffset", scope, true, false); int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data; int nHiddenNodes = GetVariableValue("NumberOfHiddenLayerNeurons", scope, true).Data; var perceptron = CreateModel(dataset, targetVariable, dataset.VariableNames, start, end, minTimeOffset, maxTimeOffset, nHiddenNodes); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MultiLayerPerceptron"), perceptron)); return null; } public static MultiLayerPerceptron CreateModel(Dataset dataset, string targetVariable, IEnumerable inputVariables, int start, int end, int nHiddenNodes) { return CreateModel(dataset, targetVariable, inputVariables, start, end, 0, 0, nHiddenNodes); } public static MultiLayerPerceptron CreateModel(Dataset dataset, string targetVariable, IEnumerable inputVariables, int start, int end, int minTimeOffset, int maxTimeOffset, int nHiddenNodes) { int targetVariableIndex = dataset.GetVariableIndex(targetVariable); List allowedColumns = CalculateAllowedColumns(dataset, targetVariableIndex, inputVariables.Select(x => dataset.GetVariableIndex(x)), start, end); List allowedRows = CalculateAllowedRows(dataset, targetVariableIndex, allowedColumns, start, end, minTimeOffset, maxTimeOffset); double[,] inputMatrix = PrepareInputMatrix(dataset, allowedColumns, allowedRows, minTimeOffset, maxTimeOffset); double[] targetVector = PrepareTargetVector(dataset, targetVariableIndex, allowedRows); var perceptron = TrainPerceptron(inputMatrix, targetVector, nHiddenNodes); return new MultiLayerPerceptron(perceptron, inputVariables, minTimeOffset, maxTimeOffset); } private static alglib.mlpbase.multilayerperceptron TrainPerceptron(double[,] inputMatrix, double[] targetVector, int nHiddenNodes) { int retVal = 0; int n = targetVector.Length; int p = inputMatrix.GetLength(1); alglib.mlpbase.multilayerperceptron perceptron = new alglib.mlpbase.multilayerperceptron(); alglib.mlpbase.mlpcreate1(p - 1, nHiddenNodes, 1, ref perceptron); alglib.mlptrain.mlpreport report = new alglib.mlptrain.mlpreport(); double[,] dataset = new double[n, p]; for (int row = 0; row < n; row++) { for (int column = 0; column < p - 1; column++) { dataset[row, column] = inputMatrix[row, column]; } dataset[row, p - 1] = targetVector[row]; } alglib.mlptrain.mlptrainlbfgs(ref perceptron, ref dataset, n, 0.001, 2, 0.01, 0, ref retVal, ref report); if (retVal != 2) throw new ArgumentException("Error in training of multi layer perceptron"); return perceptron; } //returns list of valid row indexes (rows without NaN values) private static List CalculateAllowedRows(Dataset dataset, int targetVariable, IList allowedColumns, int start, int end, int minTimeOffset, int maxTimeOffset) { List allowedRows = new List(); bool add; for (int row = start; row < end; row++) { add = true; for (int colIndex = 0; colIndex < allowedColumns.Count && add == true; colIndex++) { for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) { if ( row + timeOffset < 0 || row + timeOffset > dataset.Rows || double.IsNaN(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) || double.IsInfinity(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) || double.IsNaN(dataset.GetValue(row + timeOffset, targetVariable))) { add = false; } } } if (add) allowedRows.Add(row); add = true; } return allowedRows; } //returns list of valid column indexes (columns which contain max. 10% NaN (or infinity) and contain at least two different values) private static List CalculateAllowedColumns(Dataset dataset, int targetVariable, IEnumerable inputVariables, int start, int end) { List allowedColumns = new List(); double n = end - start; foreach (int inputVariable in inputVariables) {// = 0; i < dataset.Columns; i++) { double nanRatio = dataset.CountMissingValues(inputVariable, start, end) / n; if (inputVariable != targetVariable && nanRatio < 0.1 && dataset.GetRange(inputVariable, start, end) > 0.0) { allowedColumns.Add(inputVariable); } } return allowedColumns; } private static double[,] PrepareInputMatrix(Dataset dataset, List allowedColumns, List allowedRows, int minTimeOffset, int maxTimeOffset) { int rowCount = allowedRows.Count; int timeOffsetRange = (maxTimeOffset - minTimeOffset + 1); double[,] matrix = new double[rowCount, (allowedColumns.Count * timeOffsetRange) + 1]; for (int row = 0; row < allowedRows.Count; row++) for (int col = 0; col < allowedColumns.Count; col++) { for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) matrix[row, (col * timeOffsetRange) + (timeOffset - minTimeOffset)] = dataset.GetValue(allowedRows[row] + timeOffset, allowedColumns[col]); } //add constant 1.0 in last column for (int i = 0; i < rowCount; i++) matrix[i, allowedColumns.Count * timeOffsetRange] = 1.0; return matrix; } private static double[] PrepareTargetVector(Dataset dataset, int targetVariable, List allowedRows) { int rowCount = allowedRows.Count; double[] targetVector = new double[rowCount]; double[] samples = dataset.Samples; for (int row = 0; row < rowCount; row++) { targetVector[row] = dataset.GetValue(allowedRows[row], targetVariable); } return targetVector; } } }