#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using System.Xml; using System.Diagnostics; using HeuristicLab.DataAnalysis; using HeuristicLab.Data; using HeuristicLab.Modeling; using HeuristicLab.Operators; using HeuristicLab.Random; using HeuristicLab.Selection; using HeuristicLab.Operators.Programmable; namespace HeuristicLab.ArtificialNeuralNetworks { public class MultiLayerPerceptronRegression : ItemBase, IEditable, IAlgorithm { public virtual string Name { get { return "MultiLayerPerceptronRegression"; } } public virtual string Description { get { return "TODO"; } } private IEngine engine; public virtual IEngine Engine { get { return engine; } } public virtual Dataset Dataset { get { return ProblemInjector.GetVariableValue("Dataset", null, false); } set { ProblemInjector.GetVariable("Dataset").Value = value; } } public virtual string TargetVariable { get { return ProblemInjector.GetVariableValue("TargetVariable", null, false).Data; } set { ProblemInjector.GetVariableValue("TargetVariable", null, false).Data = value; } } public virtual IOperator ProblemInjector { get { IOperator main = GetMainOperator(); CombinedOperator probInjector = (CombinedOperator)main.SubOperators[2]; return probInjector.OperatorGraph.InitialOperator.SubOperators[0]; } set { IOperator main = GetMainOperator(); CombinedOperator probInjector = (CombinedOperator)main.SubOperators[2]; probInjector.OperatorGraph.InitialOperator.RemoveSubOperator(0); probInjector.OperatorGraph.InitialOperator.AddSubOperator(value, 0); } } public IEnumerable AllowedVariables { get { ItemList allowedVariables = ProblemInjector.GetVariableValue>("AllowedFeatures", null, false); return allowedVariables.Select(x => x.Data); } set { ItemList allowedVariables = ProblemInjector.GetVariableValue>("AllowedFeatures", null, false); foreach (string x in value) allowedVariables.Add(new StringData(x)); } } public int TrainingSamplesStart { get { return ProblemInjector.GetVariableValue("TrainingSamplesStart", null, false).Data; } set { ProblemInjector.GetVariableValue("TrainingSamplesStart", null, false).Data = value; } } public int TrainingSamplesEnd { get { return ProblemInjector.GetVariableValue("TrainingSamplesEnd", null, false).Data; } set { ProblemInjector.GetVariableValue("TrainingSamplesEnd", null, false).Data = value; } } public int ValidationSamplesStart { get { return ProblemInjector.GetVariableValue("ValidationSamplesStart", null, false).Data; } set { ProblemInjector.GetVariableValue("ValidationSamplesStart", null, false).Data = value; } } public int ValidationSamplesEnd { get { return ProblemInjector.GetVariableValue("ValidationSamplesEnd", null, false).Data; } set { ProblemInjector.GetVariableValue("ValidationSamplesEnd", null, false).Data = value; } } public int TestSamplesStart { get { return ProblemInjector.GetVariableValue("TestSamplesStart", null, false).Data; } set { ProblemInjector.GetVariableValue("TestSamplesStart", null, false).Data = value; } } public int TestSamplesEnd { get { return ProblemInjector.GetVariableValue("TestSamplesEnd", null, false).Data; } set { ProblemInjector.GetVariableValue("TestSamplesEnd", null, false).Data = value; } } public IntArrayData NumberOfHiddenNodesList { get { return GetVariableInjector().GetVariable("NumberOfHiddenNodesList").GetValue(); } set { GetVariableInjector().GetVariable("NumberOfHiddenNodesList").Value = value; } } public int MaxNumberOfHiddenNodesListIndex { get { return GetVariableInjector().GetVariable("MaxNumberOfHiddenNodesIndex").GetValue().Data; } set { GetVariableInjector().GetVariable("MaxNumberOfHiddenNodesIndex").GetValue().Data = value; } } public virtual IAnalyzerModel Model { get { if (!engine.Terminated) throw new InvalidOperationException("The algorithm is still running. Wait until the algorithm is terminated to retrieve the result."); IScope bestModelScope = engine.GlobalScope; return CreateMlpModel(bestModelScope); } } public MultiLayerPerceptronRegression() { engine = new SequentialEngine.SequentialEngine(); CombinedOperator algo = CreateAlgorithm(); engine.OperatorGraph.AddOperator(algo); engine.OperatorGraph.InitialOperator = algo; MaxNumberOfHiddenNodesListIndex = NumberOfHiddenNodesList.Data.Length; } protected virtual CombinedOperator CreateAlgorithm() { CombinedOperator algo = new CombinedOperator(); SequentialProcessor seq = new SequentialProcessor(); algo.Name = Name; seq.Name = Name; IOperator globalInjector = CreateGlobalInjector(); IOperator mainLoop = CreateMainLoop(); seq.AddSubOperator(globalInjector); seq.AddSubOperator(new RandomInjector()); seq.AddSubOperator(CreateProblemInjector()); seq.AddSubOperator(mainLoop); seq.AddSubOperator(CreatePostProcessingOperator()); algo.OperatorGraph.InitialOperator = seq; algo.OperatorGraph.AddOperator(seq); return algo; } private IOperator CreateMainLoop() { SequentialProcessor seq = new SequentialProcessor(); #region initial solution SubScopesCreater modelScopeCreator = new SubScopesCreater(); modelScopeCreator.GetVariableInfo("SubScopes").Local = true; modelScopeCreator.AddVariable(new HeuristicLab.Core.Variable("SubScopes", new IntData(1))); seq.AddSubOperator(modelScopeCreator); SequentialSubScopesProcessor seqSubScopesProc = new SequentialSubScopesProcessor(); IOperator modelProcessor = CreateModelProcessor(); seqSubScopesProc.AddSubOperator(modelProcessor); seq.AddSubOperator(seqSubScopesProc); #endregion Counter nHiddenNodesCounter = new Counter(); nHiddenNodesCounter.GetVariableInfo("Value").ActualName = "NumberOfHiddenNodesIndex"; nHiddenNodesCounter.Name = "NumberOfHiddenNodesIndexCounter"; LessThanComparator comparator = new LessThanComparator(); comparator.Name = "NumberOfHiddenNodesIndexComparator"; comparator.GetVariableInfo("LeftSide").ActualName = "NumberOfHiddenNodesIndex"; comparator.GetVariableInfo("RightSide").ActualName = "MaxNumberOfHiddenNodesIndex"; comparator.GetVariableInfo("Result").ActualName = "RepeatNumberOfHiddenNodesIndexLoop"; ConditionalBranch branch = new ConditionalBranch(); branch.Name = "IfValidNumberOfHiddenNodesIndex"; branch.GetVariableInfo("Condition").ActualName = "RepeatNumberOfHiddenNodesIndexLoop"; // build loop SequentialProcessor loop = new SequentialProcessor(); loop.Name = "HiddenNodesLoop"; #region selection of better solution loop.AddSubOperator(modelScopeCreator); SequentialSubScopesProcessor subScopesProcessor = new SequentialSubScopesProcessor(); loop.AddSubOperator(subScopesProcessor); subScopesProcessor.AddSubOperator(new EmptyOperator()); subScopesProcessor.AddSubOperator(CreateModelProcessor()); Sorter sorter = new Sorter(); sorter.GetVariableInfo("Value").ActualName = "ValidationQuality"; sorter.GetVariableInfo("Descending").Local = true; sorter.AddVariable(new Variable("Descending", new BoolData(false))); loop.AddSubOperator(sorter); LeftSelector selector = new LeftSelector(); selector.GetVariableInfo("Selected").Local = true; selector.AddVariable(new Variable("Selected", new IntData(1))); loop.AddSubOperator(selector); RightReducer reducer = new RightReducer(); loop.AddSubOperator(reducer); #endregion loop.AddSubOperator(nHiddenNodesCounter); loop.AddSubOperator(comparator); branch.AddSubOperator(loop); loop.AddSubOperator(branch); seq.AddSubOperator(loop); return seq; } private IOperator CreateModelProcessor() { SequentialProcessor modelProcessor = new SequentialProcessor(); modelProcessor.AddSubOperator(CreateSetNextParameterValueOperator("NumberOfHiddenNodes")); MultiLayerPerceptronRegressionOperator trainingOperator = new MultiLayerPerceptronRegressionOperator(); trainingOperator.GetVariableInfo("NumberOfHiddenLayerNeurons").ActualName = "NumberOfHiddenNodes"; trainingOperator.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart"; trainingOperator.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd"; modelProcessor.AddSubOperator(trainingOperator); CombinedOperator trainingEvaluator = (CombinedOperator)CreateEvaluator("ActualTraining"); trainingEvaluator.OperatorGraph.InitialOperator.SubOperators[1].GetVariableInfo("MSE").ActualName = "Quality"; modelProcessor.AddSubOperator(trainingEvaluator); modelProcessor.AddSubOperator(CreateEvaluator("Validation")); DataCollector collector = new DataCollector(); collector.GetVariableInfo("Values").ActualName = "Log"; ((ItemList)collector.GetVariable("VariableNames").Value).Add(new StringData("NumberOfHiddenNodes")); ((ItemList)collector.GetVariable("VariableNames").Value).Add(new StringData("ValidationQuality")); modelProcessor.AddSubOperator(collector); return modelProcessor; } protected virtual IOperator CreateEvaluator(string p) { CombinedOperator op = new CombinedOperator(); op.Name = p + "Evaluator"; SequentialProcessor seqProc = new SequentialProcessor(); MultiLayerPerceptronEvaluator evaluator = new MultiLayerPerceptronEvaluator(); evaluator.Name = p + "SimpleEvaluator"; evaluator.GetVariableInfo("SamplesStart").ActualName = p + "SamplesStart"; evaluator.GetVariableInfo("SamplesEnd").ActualName = p + "SamplesEnd"; evaluator.GetVariableInfo("Values").ActualName = p + "Values"; SimpleMSEEvaluator mseEvaluator = new SimpleMSEEvaluator(); mseEvaluator.Name = p + "MseEvaluator"; mseEvaluator.GetVariableInfo("Values").ActualName = p + "Values"; mseEvaluator.GetVariableInfo("MSE").ActualName = p + "Quality"; SimpleR2Evaluator r2Evaluator = new SimpleR2Evaluator(); r2Evaluator.Name = p + "R2Evaluator"; r2Evaluator.GetVariableInfo("Values").ActualName = p + "Values"; r2Evaluator.GetVariableInfo("R2").ActualName = p + "R2"; SimpleMeanAbsolutePercentageErrorEvaluator mapeEvaluator = new SimpleMeanAbsolutePercentageErrorEvaluator(); mapeEvaluator.Name = p + "MAPEEvaluator"; mapeEvaluator.GetVariableInfo("Values").ActualName = p + "Values"; mapeEvaluator.GetVariableInfo("MAPE").ActualName = p + "MAPE"; SimpleMeanAbsolutePercentageOfRangeErrorEvaluator mapreEvaluator = new SimpleMeanAbsolutePercentageOfRangeErrorEvaluator(); mapreEvaluator.Name = p + "MAPREEvaluator"; mapreEvaluator.GetVariableInfo("Values").ActualName = p + "Values"; mapreEvaluator.GetVariableInfo("MAPRE").ActualName = p + "MAPRE"; SimpleVarianceAccountedForEvaluator vafEvaluator = new SimpleVarianceAccountedForEvaluator(); vafEvaluator.Name = p + "VAFEvaluator"; vafEvaluator.GetVariableInfo("Values").ActualName = p + "Values"; vafEvaluator.GetVariableInfo("VAF").ActualName = p + "VAF"; seqProc.AddSubOperator(evaluator); seqProc.AddSubOperator(mseEvaluator); seqProc.AddSubOperator(r2Evaluator); seqProc.AddSubOperator(mapeEvaluator); seqProc.AddSubOperator(mapreEvaluator); seqProc.AddSubOperator(vafEvaluator); op.OperatorGraph.AddOperator(seqProc); op.OperatorGraph.InitialOperator = seqProc; return op; } private IOperator CreateSetNextParameterValueOperator(string paramName) { ProgrammableOperator progOp = new ProgrammableOperator(); progOp.Name = "SetNext" + paramName; progOp.RemoveVariableInfo("Result"); progOp.AddVariableInfo(new VariableInfo("Value", "Value", typeof(IntData), VariableKind.New)); progOp.AddVariableInfo(new VariableInfo("ValueIndex", "ValueIndex", typeof(IntData), VariableKind.In)); progOp.AddVariableInfo(new VariableInfo("ValueList", "ValueList", typeof(IntArrayData), VariableKind.In)); progOp.Code = @" Value.Data = ValueList.Data[ValueIndex.Data]; "; progOp.GetVariableInfo("Value").ActualName = paramName; progOp.GetVariableInfo("ValueIndex").ActualName = paramName + "Index"; progOp.GetVariableInfo("ValueList").ActualName = paramName + "List"; return progOp; } protected virtual IOperator CreateProblemInjector() { return DefaultRegressionOperators.CreateProblemInjector(); } protected virtual VariableInjector CreateGlobalInjector() { VariableInjector injector = new VariableInjector(); injector.AddVariable(new HeuristicLab.Core.Variable("MaxNumberOfTrainingSamples", new IntData(4000))); injector.AddVariable(new HeuristicLab.Core.Variable("PunishmentFactor", new DoubleData(1000))); injector.AddVariable(new HeuristicLab.Core.Variable("NumberOfHiddenNodesIndex", new IntData(0))); injector.AddVariable(new HeuristicLab.Core.Variable("MaxNumberOfHiddenNodesIndex", new IntData(0))); injector.AddVariable(new HeuristicLab.Core.Variable("NumberOfHiddenNodesList", new IntArrayData(new int[] { 2, 4, 8, 16, 32, 64, 128 }))); injector.AddVariable(new HeuristicLab.Core.Variable("Log", new ItemList())); return injector; } protected virtual IOperator CreatePostProcessingOperator() { CombinedOperator op = new CombinedOperator(); op.Name = "Model Analyzer"; SequentialSubScopesProcessor seqSubScopesProc = new SequentialSubScopesProcessor(); SequentialProcessor seq = new SequentialProcessor(); seqSubScopesProc.AddSubOperator(seq); #region simple evaluators MultiLayerPerceptronEvaluator trainingEvaluator = new MultiLayerPerceptronEvaluator(); trainingEvaluator.GetVariableInfo("SamplesStart").ActualName = "TrainingSamplesStart"; trainingEvaluator.GetVariableInfo("SamplesEnd").ActualName = "TrainingSamplesEnd"; trainingEvaluator.GetVariableInfo("Values").ActualName = "TrainingValues"; MultiLayerPerceptronEvaluator testEvaluator = new MultiLayerPerceptronEvaluator(); testEvaluator.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart"; testEvaluator.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd"; testEvaluator.GetVariableInfo("Values").ActualName = "TestValues"; seq.AddSubOperator(trainingEvaluator); seq.AddSubOperator(testEvaluator); #endregion #region variable impacts // calculate and set variable impacts PredictorBuilder predictorBuilder = new PredictorBuilder(); seq.AddSubOperator(predictorBuilder); VariableQualityImpactCalculator qualityImpactCalculator = new VariableQualityImpactCalculator(); qualityImpactCalculator.GetVariableInfo("SamplesStart").ActualName = "TrainingSamplesStart"; qualityImpactCalculator.GetVariableInfo("SamplesEnd").ActualName = "TrainingSamplesEnd"; seq.AddSubOperator(qualityImpactCalculator); #endregion seq.AddSubOperator(CreateModelAnalyzerOperator()); op.OperatorGraph.AddOperator(seqSubScopesProc); op.OperatorGraph.InitialOperator = seqSubScopesProc; return op; } protected virtual IOperator CreateModelAnalyzerOperator() { return DefaultRegressionOperators.CreatePostProcessingOperator(); } protected virtual IAnalyzerModel CreateMlpModel(IScope bestModelScope) { var model = new AnalyzerModel(); CreateSpecificMlpModel(bestModelScope, model); #region variable impacts ItemList qualityImpacts = bestModelScope.GetVariableValue(ModelingResult.VariableQualityImpact.ToString(), false); foreach (ItemList row in qualityImpacts) { string variableName = ((StringData)row[0]).Data; double impact = ((DoubleData)row[1]).Data; model.SetVariableResult(ModelingResult.VariableQualityImpact, variableName, impact); model.AddInputVariable(variableName); } #endregion return model; } protected virtual void CreateSpecificMlpModel(IScope bestModelScope, IAnalyzerModel model) { DefaultRegressionOperators.PopulateAnalyzerModel(bestModelScope, model); } protected virtual IOperator GetMainOperator() { CombinedOperator lr = (CombinedOperator)Engine.OperatorGraph.InitialOperator; return lr.OperatorGraph.InitialOperator; } protected virtual IOperator GetVariableInjector() { return GetMainOperator().SubOperators[0]; } public override IView CreateView() { return engine.CreateView(); } #region IEditable Members public virtual IEditor CreateEditor() { return ((SequentialEngine.SequentialEngine)engine).CreateEditor(); } #endregion #region persistence public override object Clone(IDictionary clonedObjects) { MultiLayerPerceptronRegression clone = (MultiLayerPerceptronRegression)base.Clone(clonedObjects); clone.engine = (IEngine)Auxiliary.Clone(Engine, clonedObjects); return clone; } public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary persistedObjects) { XmlNode node = base.GetXmlNode(name, document, persistedObjects); node.AppendChild(PersistenceManager.Persist("Engine", engine, document, persistedObjects)); return node; } public override void Populate(XmlNode node, IDictionary restoredObjects) { base.Populate(node, restoredObjects); engine = (IEngine)PersistenceManager.Restore(node.SelectSingleNode("Engine"), restoredObjects); } #endregion } }