#region License Information
/* HeuristicLab
* Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.ArtificialNeuralNetworks {
public class MultiLayerPerceptronEvaluator : OperatorBase {
public MultiLayerPerceptronEvaluator()
: base() {
//Dataset infos
AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
AddVariableInfo(new VariableInfo("InputVariables", "List of allowed input variable names", typeof(ItemList), VariableKind.In));
AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal allowed time offset for input variables", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal allowed time offset for input variables", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("MultiLayerPerceptron", "Represent the model learned by the SVM", typeof(MultiLayerPerceptron), VariableKind.In));
AddVariableInfo(new VariableInfo("Values", "Target vs predicted values", typeof(DoubleMatrixData), VariableKind.New | VariableKind.Out));
}
public override IOperation Apply(IScope scope) {
Dataset dataset = GetVariableValue("Dataset", scope, true);
ItemList inputVariables = GetVariableValue("InputVariables", scope, true);
var inputVariableNames = from x in inputVariables
select ((StringData)x).Data;
string targetVariable = GetVariableValue("TargetVariable", scope, true).Data;
int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
int start = GetVariableValue("SamplesStart", scope, true).Data;
int end = GetVariableValue("SamplesEnd", scope, true).Data;
IntData minTimeOffsetData = GetVariableValue("MinTimeOffset", scope, true, false);
int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
IntData maxTimeOffsetData = GetVariableValue("MaxTimeOffset", scope, true, false);
int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
MultiLayerPerceptron model = GetVariableValue("MultiLayerPerceptron", scope, true);
double[,] values = new double[end - start, 2];
for (int i = 0; i < end - start; i++) {
double[] output = new double[1];
double[] inputRow = new double[dataset.Columns - 1];
for (int c = 1; c < inputRow.Length; c++) {
inputRow[c - 1] = dataset.GetValue(i + start, c);
}
alglib.mlpbase.multilayerperceptron p = model.Perceptron;
alglib.mlpbase.mlpprocess(ref p, ref inputRow, ref output);
model.Perceptron = p;
values[i, 0] = dataset.GetValue(start + i, targetVariableIndex);
values[i, 1] = output[0];
}
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Values"), new DoubleMatrixData(values)));
return null;
}
}
}