#region License Information
/* HeuristicLab
* Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Analysis {
///
/// An operator for analyzing the frequency of alleles.
///
[Item("AlleleFrequencyAnalyzer", "An operator for analyzing the frequency of alleles.")]
[StorableClass]
public abstract class AlleleFrequencyAnalyzer : SingleSuccessorOperator, IAnalyzer where T : class, IItem {
public virtual bool EnabledByDefault {
get { return false; }
}
public LookupParameter MaximizationParameter {
get { return (LookupParameter)Parameters["Maximization"]; }
}
public ScopeTreeLookupParameter SolutionParameter {
get { return (ScopeTreeLookupParameter)Parameters["Solution"]; }
}
public ScopeTreeLookupParameter QualityParameter {
get { return (ScopeTreeLookupParameter)Parameters["Quality"]; }
}
public LookupParameter BestKnownSolutionParameter {
get { return (LookupParameter)Parameters["BestKnownSolution"]; }
}
public ValueLookupParameter ResultsParameter {
get { return (ValueLookupParameter)Parameters["Results"]; }
}
public ValueParameter StoreHistoryParameter {
get { return (ValueParameter)Parameters["StoreHistory"]; }
}
public ValueParameter UpdateIntervalParameter {
get { return (ValueParameter)Parameters["UpdateInterval"]; }
}
public LookupParameter UpdateCounterParameter {
get { return (LookupParameter)Parameters["UpdateCounter"]; }
}
[StorableConstructor]
protected AlleleFrequencyAnalyzer(bool deserializing) : base(deserializing) { }
protected AlleleFrequencyAnalyzer(AlleleFrequencyAnalyzer original, Cloner cloner) : base(original, cloner) { }
public AlleleFrequencyAnalyzer()
: base() {
Parameters.Add(new LookupParameter("Maximization", "True if the problem is a maximization problem."));
Parameters.Add(new ScopeTreeLookupParameter("Solution", "The solutions whose alleles should be analyzed."));
Parameters.Add(new ScopeTreeLookupParameter("Quality", "The qualities of the solutions which should be analyzed."));
Parameters.Add(new LookupParameter("BestKnownSolution", "The best known solution."));
Parameters.Add(new ValueLookupParameter("Results", "The result collection where the allele frequency analysis results should be stored."));
Parameters.Add(new ValueParameter("StoreHistory", "True if the history of the allele frequency analysis should be stored.", new BoolValue(false)));
Parameters.Add(new ValueParameter("UpdateInterval", "The interval in which the allele frequency analysis should be applied.", new IntValue(1)));
Parameters.Add(new LookupParameter("UpdateCounter", "The value which counts how many times the operator was called since the last update.", "AlleleFrequencyAnalyzerUpdateCounter"));
MaximizationParameter.Hidden = true;
SolutionParameter.Hidden = true;
QualityParameter.Hidden = true;
BestKnownSolutionParameter.Hidden = true;
ResultsParameter.Hidden = true;
UpdateCounterParameter.Hidden = true;
}
#region Equality Comparers
private class AlleleIdEqualityComparer : IEqualityComparer {
public bool Equals(Allele x, Allele y) {
return x.Id == y.Id;
}
public int GetHashCode(Allele obj) {
return obj.Id.GetHashCode();
}
}
private class AlleleFrequencyIdEqualityComparer : IEqualityComparer {
public bool Equals(AlleleFrequency x, AlleleFrequency y) {
return x.Id == y.Id;
}
public int GetHashCode(AlleleFrequency obj) {
return obj.Id.GetHashCode();
}
}
#endregion
public override IOperation Apply() {
int updateInterval = UpdateIntervalParameter.Value.Value;
IntValue updateCounter = UpdateCounterParameter.ActualValue;
if (updateCounter == null) {
updateCounter = new IntValue(updateInterval);
UpdateCounterParameter.ActualValue = updateCounter;
} else updateCounter.Value++;
if (updateCounter.Value == updateInterval) {
updateCounter.Value = 0;
bool max = MaximizationParameter.ActualValue.Value;
ItemArray solutions = SolutionParameter.ActualValue;
double[] qualities = QualityParameter.ActualValue.Select(x => x.Value).ToArray();
T bestKnownSolution = BestKnownSolutionParameter.ActualValue;
bool storeHistory = StoreHistoryParameter.Value.Value;
// calculate index of current best solution
int bestIndex = -1;
if (!max) {
bestIndex = qualities
.Select((x, i) => new { Index = i, Value = x })
.OrderBy(x => x.Value)
.First().Index;
} else {
bestIndex = qualities
.Select((x, i) => new { Index = i, Value = x })
.OrderByDescending(x => x.Value)
.First().Index;
}
// calculate allels of current best and (if available) best known solution
Allele[] bestAlleles = CalculateAlleles(solutions[bestIndex]);
Allele[] bestKnownAlleles = null;
if (bestKnownSolution != null)
bestKnownAlleles = CalculateAlleles(bestKnownSolution);
// calculate allele frequencies
var frequencies = solutions.SelectMany((s, index) => CalculateAlleles(s).Select(a => new { Allele = a, Quality = qualities[index] })).
GroupBy(x => x.Allele.Id).
Select(x => new AlleleFrequency(x.Key,
x.Count() / ((double)solutions.Length),
x.Average(a => a.Allele.Impact),
x.Average(a => a.Quality),
bestKnownAlleles == null ? false : bestKnownAlleles.Any(a => a.Id == x.Key),
bestAlleles.Any(a => a.Id == x.Key)));
// calculate dummy allele frequencies of alleles of best known solution which did not occur
if (bestKnownAlleles != null) {
var bestKnownFrequencies = bestKnownAlleles.Select(x => new AlleleFrequency(x.Id, 0, x.Impact, 0, true, false)).Except(frequencies, new AlleleFrequencyIdEqualityComparer());
frequencies = frequencies.Concat(bestKnownFrequencies);
}
// fetch results collection
ResultCollection results;
if (!ResultsParameter.ActualValue.ContainsKey(Name + " Results")) {
results = new ResultCollection();
ResultsParameter.ActualValue.Add(new Result(Name + " Results", results));
} else {
results = (ResultCollection)ResultsParameter.ActualValue[Name + " Results"].Value;
}
// store allele frequencies
AlleleFrequencyCollection frequenciesCollection = new AlleleFrequencyCollection(frequencies);
if (!results.ContainsKey("Allele Frequencies"))
results.Add(new Result("Allele Frequencies", frequenciesCollection));
else
results["Allele Frequencies"].Value = frequenciesCollection;
// store allele frequencies history
if (storeHistory) {
if (!results.ContainsKey("Allele Frequencies History")) {
AlleleFrequencyCollectionHistory history = new AlleleFrequencyCollectionHistory();
history.Add(frequenciesCollection);
results.Add(new Result("Allele Frequencies History", history));
} else {
((AlleleFrequencyCollectionHistory)results["Allele Frequencies History"].Value).Add(frequenciesCollection);
}
}
// store alleles data table
DataTable allelesTable;
if (!results.ContainsKey("Alleles")) {
allelesTable = new DataTable("Alleles");
allelesTable.VisualProperties.XAxisTitle = "Iteration";
allelesTable.VisualProperties.YAxisTitle = "Number of Alleles";
allelesTable.VisualProperties.SecondYAxisTitle = "Number of Alleles";
allelesTable.Rows.Add(new DataRow("Unique Alleles"));
allelesTable.Rows["Unique Alleles"].VisualProperties.StartIndexZero = true;
allelesTable.Rows.Add(new DataRow("Unique Alleles of Best Known Solution", null));
allelesTable.Rows["Unique Alleles of Best Known Solution"].VisualProperties.SecondYAxis = true;
allelesTable.Rows["Unique Alleles of Best Known Solution"].VisualProperties.StartIndexZero = true;
allelesTable.Rows.Add(new DataRow("Fixed Alleles", null));
allelesTable.Rows["Fixed Alleles"].VisualProperties.SecondYAxis = true;
allelesTable.Rows["Fixed Alleles"].VisualProperties.StartIndexZero = true;
allelesTable.Rows.Add(new DataRow("Fixed Alleles of Best Known Solution", null));
allelesTable.Rows["Fixed Alleles of Best Known Solution"].VisualProperties.SecondYAxis = true;
allelesTable.Rows["Fixed Alleles of Best Known Solution"].VisualProperties.StartIndexZero = true;
allelesTable.Rows.Add(new DataRow("Lost Alleles of Best Known Solution", null));
allelesTable.Rows["Lost Alleles of Best Known Solution"].VisualProperties.SecondYAxis = true;
allelesTable.Rows["Lost Alleles of Best Known Solution"].VisualProperties.StartIndexZero = true;
results.Add(new Result("Alleles", allelesTable));
} else {
allelesTable = (DataTable)results["Alleles"].Value;
}
int fixedAllelesCount = frequenciesCollection.Where(x => x.Frequency == 1).Count();
var relevantAlleles = frequenciesCollection.Where(x => x.ContainedInBestKnownSolution);
int relevantAllelesCount = relevantAlleles.Count();
int fixedRelevantAllelesCount = relevantAlleles.Where(x => x.Frequency == 1).Count();
int lostRelevantAllelesCount = relevantAlleles.Where(x => x.Frequency == 0).Count();
int uniqueRelevantAllelesCount = relevantAllelesCount - lostRelevantAllelesCount;
allelesTable.Rows["Unique Alleles"].Values.Add(frequenciesCollection.Count);
allelesTable.Rows["Unique Alleles of Best Known Solution"].Values.Add(uniqueRelevantAllelesCount);
allelesTable.Rows["Fixed Alleles"].Values.Add(fixedAllelesCount);
allelesTable.Rows["Fixed Alleles of Best Known Solution"].Values.Add(fixedRelevantAllelesCount);
allelesTable.Rows["Lost Alleles of Best Known Solution"].Values.Add(lostRelevantAllelesCount);
// store alleles values
if (!results.ContainsKey("Unique Alleles"))
results.Add(new Result("Unique Alleles", new DoubleValue(frequenciesCollection.Count)));
else
((DoubleValue)results["Unique Alleles"].Value).Value = frequenciesCollection.Count;
if (!results.ContainsKey("Unique Alleles of Best Known Solution"))
results.Add(new Result("Unique Alleles of Best Known Solution", new DoubleValue(uniqueRelevantAllelesCount)));
else
((DoubleValue)results["Unique Alleles of Best Known Solution"].Value).Value = uniqueRelevantAllelesCount;
if (!results.ContainsKey("Fixed Alleles"))
results.Add(new Result("Fixed Alleles", new DoubleValue(fixedAllelesCount)));
else
((DoubleValue)results["Fixed Alleles"].Value).Value = fixedAllelesCount;
if (!results.ContainsKey("Fixed Alleles of Best Known Solution"))
results.Add(new Result("Fixed Alleles of Best Known Solution", new DoubleValue(fixedRelevantAllelesCount)));
else
((DoubleValue)results["Fixed Alleles of Best Known Solution"].Value).Value = fixedRelevantAllelesCount;
if (!results.ContainsKey("Lost Alleles of Best Known Solution"))
results.Add(new Result("Lost Alleles of Best Known Solution", new DoubleValue(lostRelevantAllelesCount)));
else
((DoubleValue)results["Lost Alleles of Best Known Solution"].Value).Value = lostRelevantAllelesCount;
// calculate contained alleles of best known solution and relative quality
if (bestKnownAlleles != null) {
double qualityRange = Math.Abs(qualities.Max() - qualities.Min());
var points = solutions.Select((s, index) => new Point2D(CalculateAlleles(s).Intersect(bestKnownAlleles, new AlleleIdEqualityComparer()).Count(),
Math.Abs(qualities[index] - qualities[bestIndex]) / qualityRange));
var avgContainedReleventAlleles = points.Select(x => x.X).Average();
var plot = new ScatterPlot("Contained Alleles of Best Known Solution and Relative Solution Qualtiy", null);
plot.VisualProperties.XAxisTitle = "Contained Alleles of Best Known Solution";
plot.VisualProperties.YAxisTitle = "Relative Solution Quality";
plot.VisualProperties.XAxisMinimumAuto = false;
plot.VisualProperties.XAxisMinimumFixedValue = 0.0;
plot.VisualProperties.XAxisMaximumAuto = false;
plot.VisualProperties.XAxisMaximumFixedValue = bestKnownAlleles.Length;
plot.VisualProperties.YAxisMinimumAuto = false;
plot.VisualProperties.YAxisMinimumFixedValue = 0.0;
plot.VisualProperties.YAxisMaximumAuto = false;
plot.VisualProperties.YAxisMaximumFixedValue = 1.0;
var row = new ScatterPlotDataRow("Solutions of Current Generation", null, points);
row.VisualProperties.PointStyle = ScatterPlotDataRowVisualProperties.ScatterPlotDataRowPointStyle.Circle;
row.VisualProperties.PointSize = 5;
plot.Rows.Add(row);
if (!results.ContainsKey("Scatter Plot"))
results.Add(new Result("Scatter Plot", plot));
else
results["Scatter Plot"].Value = plot;
if (storeHistory) {
if (!results.ContainsKey("Scatter Plot History")) {
results.Add(new Result("Scatter Plot History", new ScatterPlotHistory()));
}
((ScatterPlotHistory)results["Scatter Plot History"].Value).Add(plot);
}
if (!allelesTable.Rows.ContainsKey("Average Contained Alleles of Best Known Solution")) {
allelesTable.Rows.Add(new DataRow("Average Contained Alleles of Best Known Solution", null));
allelesTable.Rows["Average Contained Alleles of Best Known Solution"].VisualProperties.SecondYAxis = true;
allelesTable.Rows["Average Contained Alleles of Best Known Solution"].VisualProperties.StartIndexZero = true;
}
allelesTable.Rows["Average Contained Alleles of Best Known Solution"].Values.Add(avgContainedReleventAlleles);
if (!results.ContainsKey("Average Contained Alleles of Best Known Solution"))
results.Add(new Result("Average Contained Alleles of Best Known Solution", new DoubleValue(avgContainedReleventAlleles)));
else
((DoubleValue)results["Average Contained Alleles of Best Known Solution"].Value).Value = avgContainedReleventAlleles;
}
}
return base.Apply();
}
protected abstract Allele[] CalculateAlleles(T solution);
}
}