#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.ScatterSearch { /// /// An operator that updates the solution pool. /// [Item("SolutionPoolUpdateMethod", "An operator that updates the solution pool.")] [StorableClass] public sealed class SolutionPoolUpdateMethod : SingleSuccessorOperator, ISimilarityBasedOperator, ISingleObjectiveOperator { #region ISimilarityBasedOperator Members [Storable] public ISolutionSimilarityCalculator SimilarityCalculator { get; set; } #endregion #region Parameter properties public ScopeParameter CurrentScopeParameter { get { return (ScopeParameter)Parameters["CurrentScope"]; } } public IValueLookupParameter MaximizationParameter { get { return (IValueLookupParameter)Parameters["Maximization"]; } } public IValueLookupParameter NewSolutionsParameter { get { return (IValueLookupParameter)Parameters["NewSolutions"]; } } public IValueLookupParameter QualityParameter { get { return (IValueLookupParameter)Parameters["Quality"]; } } public IValueLookupParameter ReferenceSetSizeParameter { get { return (IValueLookupParameter)Parameters["ReferenceSetSize"]; } } #endregion #region Properties private IScope CurrentScope { get { return CurrentScopeParameter.ActualValue; } } private BoolValue Maximization { get { return MaximizationParameter.ActualValue; } set { MaximizationParameter.ActualValue = value; } } private BoolValue NewSolutions { get { return NewSolutionsParameter.ActualValue; } } private IItem Quality { get { return QualityParameter.ActualValue; } } private IntValue ReferenceSetSize { get { return ReferenceSetSizeParameter.ActualValue; } set { ReferenceSetSizeParameter.ActualValue = value; } } #endregion [StorableConstructor] private SolutionPoolUpdateMethod(bool deserializing) : base(deserializing) { } private SolutionPoolUpdateMethod(SolutionPoolUpdateMethod original, Cloner cloner) : base(original, cloner) { this.SimilarityCalculator = cloner.Clone(original.SimilarityCalculator); } public SolutionPoolUpdateMethod() : base() { Initialize(); } public override IDeepCloneable Clone(Cloner cloner) { return new SolutionPoolUpdateMethod(this, cloner); } private void Initialize() { #region Create parameters Parameters.Add(new ScopeParameter("CurrentScope", "The current scope that is the reference set.")); Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false.")); Parameters.Add(new ValueLookupParameter("NewSolutions", "True if new solutions have been found, otherwise false.")); Parameters.Add(new ValueLookupParameter("Quality", "This parameter is used for name translation only.")); Parameters.Add(new ValueLookupParameter("ReferenceSetSize", "The size of the reference set.")); #endregion } public override IOperation Apply() { ScopeList parents = new ScopeList(); ScopeList offspring = new ScopeList(); // split parents and offspring foreach (var scope in CurrentScope.SubScopes) { parents.AddRange(scope.SubScopes.Take(scope.SubScopes.Count - 1)); offspring.AddRange(scope.SubScopes.Last().SubScopes); } CurrentScope.SubScopes.Clear(); // attention: assumes that parents are distinct // distinction might cause a too small reference set (e.g. reference set = {1, 2, 2, 2,..., 2} -> union = {1, 2} var orderedParents = Maximization.Value ? parents.OrderByDescending(x => x.Variables[QualityParameter.ActualName].Value) : parents.OrderBy(x => x.Variables[QualityParameter.ActualName].Value); var orderedOffspring = Maximization.Value ? offspring.OrderByDescending(x => x.Variables[QualityParameter.ActualName].Value) : offspring.OrderBy(x => x.Variables[QualityParameter.ActualName].Value); CurrentScope.SubScopes.AddRange(orderedParents); double worstParentQuality = (orderedParents.Last().Variables[QualityParameter.ActualName].Value as DoubleValue).Value; var hasBetterQuality = Maximization.Value ? (Func)(x => { return (x.Variables[QualityParameter.ActualName].Value as DoubleValue).Value > worstParentQuality; }) : (Func)(x => { return (x.Variables[QualityParameter.ActualName].Value as DoubleValue).Value < worstParentQuality; }); // is there any offspring better than the worst parent? if (orderedOffspring.Any(hasBetterQuality)) { // produce the set union var union = orderedParents.Union(orderedOffspring.Where(hasBetterQuality), SimilarityCalculator); if (union.Count() > orderedParents.Count()) { var orderedUnion = Maximization.Value ? union.OrderByDescending(x => x.Variables[QualityParameter.ActualName].Value) : union.OrderBy(x => x.Variables[QualityParameter.ActualName].Value); CurrentScope.SubScopes.Replace(orderedUnion.Take(ReferenceSetSize.Value)); NewSolutions.Value = true; } } return base.Apply(); } } }