#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Analysis;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Evolutionary;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Selection;
namespace HeuristicLab.Algorithms.SGA {
///
/// An operator which represents a Standard Genetic Algorithm.
///
[Item("SGAOperator", "An operator which represents a Standard Genetic Algorithm.")]
[Creatable("Test")]
public class SGAOperator : AlgorithmOperator {
#region Parameter properties
public ValueLookupParameter RandomParameter {
get { return (ValueLookupParameter)Parameters["Random"]; }
}
public ValueLookupParameter MaximizationParameter {
get { return (ValueLookupParameter)Parameters["Maximization"]; }
}
public SubScopesLookupParameter QualityParameter {
get { return (SubScopesLookupParameter)Parameters["Quality"]; }
}
public ValueLookupParameter SelectorParameter {
get { return (ValueLookupParameter)Parameters["Selector"]; }
}
public ValueLookupParameter CrossoverParameter {
get { return (ValueLookupParameter)Parameters["Crossover"]; }
}
public ValueLookupParameter MutationProbabilityParameter {
get { return (ValueLookupParameter)Parameters["MutationProbability"]; }
}
public ValueLookupParameter MutatorParameter {
get { return (ValueLookupParameter)Parameters["Mutator"]; }
}
public ValueLookupParameter EvaluatorParameter {
get { return (ValueLookupParameter)Parameters["Evaluator"]; }
}
public ValueLookupParameter ElitesParameter {
get { return (ValueLookupParameter)Parameters["Elites"]; }
}
public ValueLookupParameter MaximumGenerationsParameter {
get { return (ValueLookupParameter)Parameters["MaximumGenerations"]; }
}
public ValueLookupParameter ResultsParameter {
get { return (ValueLookupParameter)Parameters["Results"]; }
}
private ScopeParameter CurrentScopeParameter {
get { return (ScopeParameter)Parameters["CurrentScope"]; }
}
public IScope CurrentScope {
get { return CurrentScopeParameter.ActualValue; }
}
#endregion
public SGAOperator()
: base() {
#region Create parameters
Parameters.Add(new ValueLookupParameter("Random", "A pseudo random number generator."));
Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false."));
Parameters.Add(new SubScopesLookupParameter("Quality", "The value which represents the quality of a solution."));
Parameters.Add(new ValueLookupParameter("Selector", "The operator used to select solutions for reproduction."));
Parameters.Add(new ValueLookupParameter("Crossover", "The operator used to cross solutions."));
Parameters.Add(new ValueLookupParameter("MutationProbability", "The probability that the mutation operator is applied on a solution."));
Parameters.Add(new ValueLookupParameter("Mutator", "The operator used to mutate solutions."));
Parameters.Add(new ValueLookupParameter("Evaluator", "The operator used to evaluate solutions."));
Parameters.Add(new ValueLookupParameter("Elites", "The numer of elite solutions which are kept in each generation."));
Parameters.Add(new ValueLookupParameter("MaximumGenerations", "The maximum number of generations which should be processed."));
Parameters.Add(new ValueLookupParameter("Results", "The variable collection where results should be stored."));
Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the SGA should be applied."));
#endregion
#region Create operator graph
SubScopesSorter subScopesSorter1 = new SubScopesSorter();
Placeholder selector = new Placeholder();
SequentialSubScopesProcessor sequentialSubScopesProcessor1 = new SequentialSubScopesProcessor();
ChildrenCreator childrenCreator = new ChildrenCreator();
UniformSequentialSubScopesProcessor uniformSequentialSubScopesProcessor = new UniformSequentialSubScopesProcessor();
Placeholder crossover = new Placeholder();
StochasticBranch stochasticBranch = new StochasticBranch();
Placeholder mutator = new Placeholder();
Placeholder evaluator = new Placeholder();
SubScopesRemover subScopesRemover = new SubScopesRemover();
SubScopesSorter subScopesSorter2 = new SubScopesSorter();
SequentialSubScopesProcessor sequentialSubScopesProcessor2 = new SequentialSubScopesProcessor();
LeftSelector leftSelector = new LeftSelector();
RightReducer rightReducer = new RightReducer();
MergingReducer mergingReducer = new MergingReducer();
IntCounter intCounter = new IntCounter();
Comparator comparator = new Comparator();
BestAverageWorstQualityCalculator bestAverageWorstQualityCalculator = new BestAverageWorstQualityCalculator();
ResultsCollector resultsCollector = new ResultsCollector();
ConditionalBranch conditionalBranch = new ConditionalBranch();
subScopesSorter1.DescendingParameter.ActualName = "Maximization";
subScopesSorter1.ValueParameter.ActualName = "Quality";
OperatorGraph.InitialOperator = subScopesSorter1;
subScopesSorter1.Successor = selector;
selector.Name = "Selector";
selector.OperatorParameter.ActualName = "Selector";
selector.Successor = sequentialSubScopesProcessor1;
sequentialSubScopesProcessor1.Operators.Add(new EmptyOperator());
sequentialSubScopesProcessor1.Operators.Add(childrenCreator);
sequentialSubScopesProcessor1.Successor = sequentialSubScopesProcessor2;
childrenCreator.ParentsPerChild = new IntData(2);
childrenCreator.Successor = uniformSequentialSubScopesProcessor;
uniformSequentialSubScopesProcessor.Operator = crossover;
uniformSequentialSubScopesProcessor.Successor = subScopesSorter2;
crossover.Name = "Crossover";
crossover.OperatorParameter.ActualName = "Crossover";
crossover.Successor = stochasticBranch;
stochasticBranch.FirstBranch = mutator;
stochasticBranch.ProbabilityParameter.ActualName = "MutationProbability";
stochasticBranch.RandomParameter.ActualName = "Random";
stochasticBranch.SecondBranch = null;
stochasticBranch.Successor = evaluator;
mutator.Name = "Mutator";
mutator.OperatorParameter.ActualName = "Mutator";
mutator.Successor = null;
evaluator.Name = "Evaluator";
evaluator.OperatorParameter.ActualName = "Evaluator";
evaluator.Successor = subScopesRemover;
subScopesRemover.RemoveAllSubScopes = true;
subScopesRemover.Successor = null;
subScopesSorter2.DescendingParameter.ActualName = "Maximization";
subScopesSorter2.ValueParameter.ActualName = "Quality";
subScopesSorter2.Successor = null;
sequentialSubScopesProcessor2.Operators.Add(leftSelector);
sequentialSubScopesProcessor2.Operators.Add(new EmptyOperator());
sequentialSubScopesProcessor2.Successor = mergingReducer;
leftSelector.CopySelected = new BoolData(false);
leftSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
leftSelector.Successor = rightReducer;
rightReducer.Successor = null;
mergingReducer.Successor = intCounter;
intCounter.Increment = new IntData(1);
intCounter.ValueParameter.ActualName = "Generations";
intCounter.Successor = comparator;
comparator.Comparison = new ComparisonData(Comparison.GreaterOrEqual);
comparator.LeftSideParameter.ActualName = "Generations";
comparator.ResultParameter.ActualName = "Terminate";
comparator.RightSideParameter.ActualName = "MaximumGenerations";
comparator.Successor = bestAverageWorstQualityCalculator;
bestAverageWorstQualityCalculator.AverageQualityParameter.ActualName = "AverageQuality";
bestAverageWorstQualityCalculator.BestQualityParameter.ActualName = "BestQuality";
bestAverageWorstQualityCalculator.MaximizationParameter.ActualName = "Maximization";
bestAverageWorstQualityCalculator.QualityParameter.ActualName = "Quality";
bestAverageWorstQualityCalculator.WorstQualityParameter.ActualName = "WorstQuality";
bestAverageWorstQualityCalculator.Successor = resultsCollector;
LookupParameter bestQuality = new LookupParameter("BestQuality");
bestQuality.ActualName = "BestQuality";
resultsCollector.CollectedValues.Add(bestQuality);
LookupParameter averageQuality = new LookupParameter("AverageQuality");
averageQuality.ActualName = "AverageQuality";
resultsCollector.CollectedValues.Add(averageQuality);
LookupParameter worstQuality = new LookupParameter("WorstQuality");
worstQuality.ActualName = "WorstQuality";
resultsCollector.CollectedValues.Add(worstQuality);
resultsCollector.ResultsParameter.ActualName = "Results";
resultsCollector.Successor = conditionalBranch;
conditionalBranch.ConditionParameter.ActualName = "Terminate";
conditionalBranch.FalseBranch = subScopesSorter1;
conditionalBranch.TrueBranch = null;
conditionalBranch.Successor = null;
#endregion
}
}
}