#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * and the BEACON Center for the Study of Evolution in Action. * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Threading; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.BinaryVectorEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.Binary; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid { // This code is based off the publication // B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014 // and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid [Item("Parameter-less Population Pyramid", "Binary value optimization algorithm which requires no configuration. B. W. Goldman and W. F. Punch, Parameter-less Population Pyramid, GECCO, pp. 785–792, 2014")] [StorableClass] [Creatable("Algorithms")] public class ParameterlessPopulationPyramid : BasicAlgorithm { public override Type ProblemType { get { return typeof(BinaryProblem); } } public new BinaryProblem Problem { get { return (BinaryProblem)base.Problem; } set { base.Problem = value; } } private readonly IRandom random = new MersenneTwister(); private List pyramid; private EvaluationTracker tracker; // Tracks all solutions in Pyramid for quick membership checks private HashSet seen = new HashSet(new EnumerableBoolEqualityComparer()); #region ParameterNames private const string MaximumIterationsParameterName = "Maximum Iterations"; private const string MaximumEvaluationsParameterName = "Maximum Evaluations"; private const string MaximumRuntimeParameterName = "Maximum Runtime"; private const string SeedParameterName = "Seed"; private const string SetSeedRandomlyParameterName = "SetSeedRandomly"; #endregion #region ParameterProperties public IFixedValueParameter MaximumIterationsParameter { get { return (IFixedValueParameter)Parameters[MaximumIterationsParameterName]; } } public IFixedValueParameter MaximumEvaluationsParameter { get { return (IFixedValueParameter)Parameters[MaximumEvaluationsParameterName]; } } public IFixedValueParameter MaximumRuntimeParameter { get { return (IFixedValueParameter)Parameters[MaximumRuntimeParameterName]; } } public IFixedValueParameter SeedParameter { get { return (IFixedValueParameter)Parameters[SeedParameterName]; } } public FixedValueParameter SetSeedRandomlyParameter { get { return (FixedValueParameter)Parameters[SetSeedRandomlyParameterName]; } } #endregion #region Properties public int MaximumIterations { get { return MaximumIterationsParameter.Value.Value; } set { MaximumIterationsParameter.Value.Value = value; } } public int MaximumEvaluations { get { return MaximumEvaluationsParameter.Value.Value; } set { MaximumEvaluationsParameter.Value.Value = value; } } public int MaximumRuntime { get { return MaximumRuntimeParameter.Value.Value; } set { MaximumRuntimeParameter.Value.Value = value; } } public int Seed { get { return SeedParameter.Value.Value; } set { SeedParameter.Value.Value = value; } } public bool SetSeedRandomly { get { return SetSeedRandomlyParameter.Value.Value; } set { SetSeedRandomlyParameter.Value.Value = value; } } #endregion #region ResultsProperties private double ResultsBestQuality { get { return ((DoubleValue)Results["Best Quality"].Value).Value; } set { ((DoubleValue)Results["Best Quality"].Value).Value = value; } } private BinaryVector ResultsBestSolution { get { return (BinaryVector)Results["Best Solution"].Value; } set { Results["Best Solution"].Value = value; } } private int ResultsBestFoundOnEvaluation { get { return ((IntValue)Results["Evaluation Best Solution Was Found"].Value).Value; } set { ((IntValue)Results["Evaluation Best Solution Was Found"].Value).Value = value; } } private int ResultsEvaluations { get { return ((IntValue)Results["Evaluations"].Value).Value; } set { ((IntValue)Results["Evaluations"].Value).Value = value; } } private int ResultsIterations { get { return ((IntValue)Results["Iterations"].Value).Value; } set { ((IntValue)Results["Iterations"].Value).Value = value; } } private DataTable ResultsQualities { get { return ((DataTable)Results["Qualities"].Value); } } private DataRow ResultsQualitiesBest { get { return ResultsQualities.Rows["Best Quality"]; } } private DataRow ResultsQualitiesIteration { get { return ResultsQualities.Rows["Iteration Quality"]; } } private DataRow ResultsLevels { get { return ((DataTable)Results["Pyramid Levels"].Value).Rows["Levels"]; } } private DataRow ResultsSolutions { get { return ((DataTable)Results["Stored Solutions"].Value).Rows["Solutions"]; } } #endregion [StorableConstructor] protected ParameterlessPopulationPyramid(bool deserializing) : base(deserializing) { } protected ParameterlessPopulationPyramid(ParameterlessPopulationPyramid original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new ParameterlessPopulationPyramid(this, cloner); } public ParameterlessPopulationPyramid() { Parameters.Add(new FixedValueParameter(MaximumIterationsParameterName, "", new IntValue(Int32.MaxValue))); Parameters.Add(new FixedValueParameter(MaximumEvaluationsParameterName, "", new IntValue(Int32.MaxValue))); Parameters.Add(new FixedValueParameter(MaximumRuntimeParameterName, "The maximum runtime in seconds after which the algorithm stops. Use -1 to specify no limit for the runtime", new IntValue(3600))); Parameters.Add(new FixedValueParameter(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true))); } protected override void OnExecutionTimeChanged() { base.OnExecutionTimeChanged(); if (CancellationTokenSource == null) return; if (MaximumRuntime == -1) return; if (ExecutionTime.TotalSeconds > MaximumRuntime) CancellationTokenSource.Cancel(); } private void AddIfUnique(BinaryVector solution, int level) { // Don't add things you have seen if (seen.Contains(solution)) return; if (level == pyramid.Count) { pyramid.Add(new Population(tracker.Length, random)); } var copied = (BinaryVector)solution.Clone(); pyramid[level].Add(copied); seen.Add(copied); } // In the GECCO paper, Figure 1 private double iterate() { // Create a random solution BinaryVector solution = new BinaryVector(tracker.Length); for (int i = 0; i < solution.Length; i++) { solution[i] = random.Next(2) == 1; } double fitness = tracker.Evaluate(solution, random); fitness = HillClimber.ImproveToLocalOptimum(tracker, solution, fitness, random); AddIfUnique(solution, 0); for (int level = 0; level < pyramid.Count; level++) { var current = pyramid[level]; double newFitness = LinkageCrossover.ImproveUsingTree(current.Tree, current.Solutions, solution, fitness, tracker, random); // add it to the next level if its a strict fitness improvement if (tracker.IsBetter(newFitness, fitness)) { fitness = newFitness; AddIfUnique(solution, level + 1); } } return fitness; } protected override void Run(CancellationToken cancellationToken) { // Set up the algorithm if (SetSeedRandomly) Seed = new System.Random().Next(); pyramid = new List(); seen.Clear(); random.Reset(Seed); tracker = new EvaluationTracker(Problem, MaximumEvaluations); // Set up the results display Results.Add(new Result("Iterations", new IntValue(0))); Results.Add(new Result("Evaluations", new IntValue(0))); Results.Add(new Result("Best Solution", new BinaryVector(tracker.BestSolution))); Results.Add(new Result("Best Quality", new DoubleValue(tracker.BestQuality))); Results.Add(new Result("Evaluation Best Solution Was Found", new IntValue(tracker.BestFoundOnEvaluation))); var table = new DataTable("Qualities"); table.Rows.Add(new DataRow("Best Quality")); var iterationRows = new DataRow("Iteration Quality"); iterationRows.VisualProperties.LineStyle = DataRowVisualProperties.DataRowLineStyle.Dot; table.Rows.Add(iterationRows); Results.Add(new Result("Qualities", table)); table = new DataTable("Pyramid Levels"); table.Rows.Add(new DataRow("Levels")); Results.Add(new Result("Pyramid Levels", table)); table = new DataTable("Stored Solutions"); table.Rows.Add(new DataRow("Solutions")); Results.Add(new Result("Stored Solutions", table)); // Loop until iteration limit reached or canceled. for (ResultsIterations = 0; ResultsIterations < MaximumIterations; ResultsIterations++) { double fitness = double.NaN; try { fitness = iterate(); cancellationToken.ThrowIfCancellationRequested(); } finally { ResultsEvaluations = tracker.Evaluations; ResultsBestSolution = new BinaryVector(tracker.BestSolution); ResultsBestQuality = tracker.BestQuality; ResultsBestFoundOnEvaluation = tracker.BestFoundOnEvaluation; ResultsQualitiesBest.Values.Add(tracker.BestQuality); ResultsQualitiesIteration.Values.Add(fitness); ResultsLevels.Values.Add(pyramid.Count); ResultsSolutions.Values.Add(seen.Count); } } } } }